Series F4P

User's Manual

96mm x 96mm Process Controller (1/4 DIN) with Guided Setup and Programming

N WATLOW

1241 Bundy Boulevard, Winona, Minnesota USA
Phone: +1 (507) 454-5300, Fax: +1 (507) 452-4507 http://www.watlow.com

Safety Information

CAUTION or WARNING

Electrical Shock Hazard CAUTION or WARNING

We use note, caution and warning symbols throughout this book to draw your attention to important operational and safety information.

A "NOTE" marks a short message to alert you to an important detail.
A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.
A "WARNING" safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.

The safety alert symbol, $\mathbb{\wedge}$ (an exclamation point in a triangle) precedes a general CAUTION or WARNING statement.

The electrical hazard symbol, \mathbb{A} (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement.

Technical Assistance

If you encounter a problem with your Watlow controller, review your configuration information to verify that your selections are consistent with your application: inputs; outputs; alarms; limits; etc. If the problem persists after checking the configuration of the controller, you can get technical assistance from your local Watlow representative (see back cover), or in the U.S., dial +1 (507) 494-5656 between 7 a.m. and 5 p.m., Central Standard Time (CST). Ask for for an Applications Engineer. Please have the following information available when calling:

- Complete model number - All configuration information
- User's Manual
- Diagnostic menu readings

Your Comments

We wel come your comments or suggestions on this user's manual. Please send them to: Technical Writer, Watlow Winona, 1241 Bundy Blvd., P.O. Box 5580, Winona, Minnesota, USA 55987-5580; telephone: +1 (507) 454-5300; fax: +1 (507) 452-4507.
© Copyright 2003 by Watlow Winona, Inc. All rights reserved. (2328)

Series F4P: Table of Contents

Operating the Controller
Chapter 1: Introduction 1.1
Setup Steps 1.2
Chapter 2: Operating from the Front Panel 2.1
Keys, Displays and Lights 2.2
Guided Programming 2.3
Custom Main Page 2.3
Auto and Manual Operation 2.3
Troubleshooting, Alarms and Errors 2.4
Programming the Controller
Chapter 3: Operations Page 3.1
Alarm Set Points 3.1
To Clear an Alarm or Error 3.1
Autotune PID 3.2
Edit PID 3.2
Multiple PID Sets 3.3
Cascade 3.3
Chapter 4: Setup Page 4.1
Parameter Setup Order 4.1
Customizing the Main Page 4.2
Static Messages 4.2
Chapter 5: Factory Page 5.1
Security 5.1
Diagnostics 5.3
Calibration 5.3
Chapter 6: Parameters 6.1
Pages, Menus and Parameters 6.1
Main Page 6.2
Operations Page Parameter Table 6.4
Setup Page Parameter Table 6.11
Factory Page Parameter Table 6.26
Chapter 7: Features 7.1
Inputs 7.2
Control Methods 7.5
Other Features 7.9
Alarms 7.10
Advanced Features 7.12
Features in Enhanced Series F4P Controller7.15
Installation and Wiring
Chapter 8: Installation and Wiring 8.1
Wiring the F4P Controller 8.5
Communications
Chapter 9: Communications 9.1
Exception Responses 9.1
Modbus Registers (Alphabetical) 9.2
Modbus Registers (Numerical) 9.11
Appendix
Specifications A. 2
Ordering Information A. 3
Declaration of Conformity A. 4
Glossary A. 5
Index A. 8
Software Map A. 13
About Watlow and Warranty InformationInside Back Cover

A downloadable electronic copy of this user manual is available free of charge through Watlow's web site: http://www.watlow.com/literature/prodtechinfo

Notes

1
 Chapter One: Introduction

Watlow's Series F4P, 96mm by 96 mm ($1 / 4$ DIN)
Temperature/Process controllers are easy to set up, program and operate in the most demanding applications. The F4P Temperature/Process controller includes:

- four-line, high resolution LCD display;
- guided setup software;
- context-sensitive information key;
- 16-bit microprocessor;
- universal and digital inputs.

Inputs and Outputs

Figure 1.1 - Series F4P Inputs and Outputs (Standard, 1 input, F4P _ - _ AA - _ _ _ _ and Enhanced, 3 inputs, F4P _ _ _ AB - _ _ _ _).

Setup Steps

Your Series F4P may arrive as an independent unit or already installed in other equipment. The steps below may or may not apply to all units. The Series F 4P software can be locked with different types of security. See Chapter 5, Factory Page.

What to do

How to do it

1Install and wire the controller.

SeChapter 8, Installation and Wiring. (This step will not be necessary if the Series F4P is already installed in equipment.)

2 Configure the controller to suit your application.

Learn to navigate the software in Chapter 2, Operating from the Front Panel, and then go to Chapter 4, Setup Page. For background, you may also want to refer to Chapter 7, Features. (This step may not be necessary if the Series F4P is al ready installed in the equipment.)

4
 Establish a set point for static set point control.

See Chapter 3, Operations Page

The $\left(\begin{array}{l}\text { Key }\end{array}\right.$

During all these steps, the Information Key will summon helpful definitions and setup tips. J ust position the cursor next to the item you want to know more about, then press the key. Press it again to return to your task.

Chapter Two: Navigation and Operating from the Front Panel

Displays and Indicator Lights 2.2
Guided Programming 2.3
Custom Main Page 2.3
Auto and Manual Operation 2.3
Troubleshooting Alarms and Errors 2.4

Series F4P software is organized into four sections called "pages." The Main Page is the central, default page that displays status information on the lower display. To get to the other pages, you must begin in the Main Page.
\checkmark Note: Access to the software is limited while the controller is autotuning (Setup and F actory pages are not accessible).

The Main Page presents error messages, static messages and the status of inputs, outputs and depending on the Custom Main Page, parameter settings in the Setup Page.

Scroll to the bottom of the Main Page to reach the other pages.

When you exit the Setup or Factory Page, the controller prompts you to restore the old settings or save the new ones.

Figure 2.1 - Page Navigation.

Keys, Displays and Lights

Figure 2.2 - Series F4P Displays and Indicator Lights.

Guided Programming

The Series F4P software guides users through most tasks. To accomplish a task, simply proceed through the sequence of parameters. For each parameter, choose the appropriate option or establish the value, then press the Right key to proceed to the parameter on the next screen. The task is complete when you return to the initial menu.

1. Use or to move the cursor to select an item in a list.
2. Press the Right key ..
3. Enter the value and make a choice.
4. Press again.
5. Repeat until you return to the original list.

To change a specific, single parameter, proceed through the parameter sequence without changing values until you reach that parameter, then make your change. After changing the value, you may back out of the sequence by pressing the Left key or continue on through the sequence by pressing the Right key. When you exit the page, you must choose to Save Changes or Restore Values.

```
Main Page
    Go to Operations
>Go to Setup
    Go to Factory
```

```
Choose to Setup:
```

>Control Output 1A
Control Output 2A

```
Choose Function:
```

$>$ Heat
Cool

```
Choose Cycle Time:
>Variable Burst
```

 Fixed Time

Custom Main Page

The Main Page shows error messages; input and output status; and allows access to controller software. You can customize the Main Page to display chosen information by going to the Setup Page, Custom Main Page Menu. (See Chapter 4, Setup Page, for instructions.)

Auto and Manual Operation

The Series F4P controller can function as a static set point controller (auto mode); or the user can directly control the outputs (manual mode).
In the static set point mode, the Series F4P can only be operated in a closed-loop configuration.
The Auto/M anual Indicator Light is on when the controller is in manual mode. To toggle between manual and auto mode, first press the Auto/Manual key , then confirm your selection in the lower display. The indicator light will flash after you press until you confirm your choice or 10 seconds have elapsed. While in manual mode you can adjust the output power level for process outputs or turn relay or open collector outputs on or off.
! WARNING: Only authorized and qualified personnel should change the set point on the controller. Failure to comply with these recommendations may result in damage to equipment and property and injury to personnel.

Static Set Point Control

When the Series F4P is in static set point mode:

- The Upper Display shows the actual process temperature of input 1.
- The Lower Display shows the default or user-configured Main Page.
To operate the Series F4P as a static set point controller, select SP1 in the Main Page then use the Up and Down keys to adjust the set point.
Limits may be placed on the set point in the Set Point Low Limit and Set Point High Limit parameters (Setup Page >Analog Input 1).
\checkmark Note: All control activity stops when you enter the Setup Page, Analog Input, Digital Input, Control Output, Alarm Output and Retransmit menus.
\checkmark Note: See also differential set point and ratio set point.

Troubleshooting

Indication	Probable Cause(s)	Corrective Action
Power		
- No displays.	- Power to unit off.	- Check switches, fuses, breakers, interlocks,
	- Fuse blown.	limits, connectors, etc. for energized condi-
	- Breaker tripped.	tions and proper connection.
	- Safety Interlock door switch, etc., activated.	
	- Separate system limit control latched.	
	- Wiring open.	
	- Input power incorrect.	- Measure power for required level. Check part number for input power required. - Check wire size. - Check for bad connections.

Communications

- Unit will not communicate.
- Address parameter incorrectly set.
- Baud rate parameter incorrectly set or incorrect protocol. Use Modbus RTU, 8 data bits, no parity and 1 stop bit.
- Unit-to-unit daisy chain disconnected.
- Communications wiring reversed, shorted or open.
- EIA-232 to EIA-485 converter incorrectly set or wired.
- Computer communications port incorrectly set up or defective.
- Termination and/or pull up of bus required.
- Serial cable is open or not wired correctly.
- Serial port of controller is defective.
- Check Communications Setup Menu and set to correct address.
- Check Communications Setup Menu and set to correct baud rate. Be sure it is M odbus RTU protocol.
- Look for a break in the daisy chain.
- Verify correct connections and test wiring paths.
- Converter must be half duplex.
- Check converter box wiring and settings.
- Check computer communications port settings and verify PC communications.
- Check converter box wiring and its documentation.
- Verify or replace serial cable.
- Return controller to factory for repair.

Alarms

- Alarm won't occur. - Alarm silencing is enabled.
- Alarm output not configured.

Verify that silencing function is required. Disable if not required.

- Configure alarm type, sides, hysteresis, logic and set points.
- Controller in Diagnostic mode.
- Alarm annunciation is set to off.
- Exit Diagnostic mode.
- Turn on alarm annunciation.
- Alarm won't clear.
(To clear the alarm, correct the alarm condition. If the alarm is latched, press $\boldsymbol{\theta}$ with the cursor at the alarm message on the Main Page.)
- Alarm latched.

Process value must return to normal by more than the hysteresis value to be cleared.

- Alarm output not configured cor- - Configure alarm type, sides, hysteresis, rectly.
- Analog input(s) in error condi- - Correct cause of input error. tion.
- Input may be in error condition. - Check the alarm output function.

Indication	Probable Cause(s)	Corrective Action
- Alarm output action is reversed.	- Alarm logic setting incorrect or output wired incorrectly.	- Check alarm logic setting and output wiring.
Controllability - Process will not stabilize.	- Power limit set incorrectly. - PID values set incorrectly. - Incorrect PID set active.	- Check power limit settings. - Tune PID set. - Use correct PID set.
- Process runs away (too high or too low).	- Controller in manual operation mode (percent power). - Power limit set incorrectly. - Thermocouple shorted. - Shorted power switching device. - Output set incorrectly (heat vs. cool). - System wired incorrectly.	- Check operation mode. Automatic is closed loop, manual is open loop. - Check power limit settings. - Check sensor, repair or replace. - Check outputs, repair or replace. - Check output settings. - Check system wiring.
- Process will not reach set point.	- PID values set incorrectly. - Power limit set incorrectly. - Open fuse or circuit breaker on energy source. - Incorrect sensor location in the process. - Slidewire (if used) settings incorrect.	- Tune PID set. - Check power limit settings. - Replace fuse or reset circuit breaker. - Reposition sensor to accurately measure process. - Check slidewire settings.
Input Errors (Upper Display shows error code for input 1 only. Lower Display shows additional errors. Input 2 and 3 error messages appear in Lower Display. Alarm Output Indicator is lit.)		
Upper R-dLO Lower !!nput xAtoD (x is 1 to 3)	- Sensor shorted (RTD). - Sensor wired backwards. Display decreases as process increases. - Input type set to wrong sensor. - Ground loop	- Repair or replace sensor. - Reverse sensor wiring connections. Red lead is usually negative for tc. - Set analog input to match sensor. - Check sensor isolation. Inputs 2 and 3 are not isolated from each other.
Upper A-dh . Lower !Input xAtoD+ (x is 1 to 3)	- Sensor open. - Sensor wired backwards. Display decreases as process increases. - Input type set to wrong sensor. - Ground loop	- Repair or replace sensor. - Reverse sensor wiring connections. Red lead is usually negative for tc. - Set analog input to match sensor. - Check sensor isolation. Inputs 2 and 3 are not isolated from each other.
Upper SEnLo Lower !!nput Sensor x (x is 1 to 3)	- Sensor shorted (RTD). - Sensor wired backwards. Display decreases as process increases. - Input type set to wrong sensor. - Ground loop	- Repair or replace sensor. - Reverse sensor wiring connections. Red lead is usually negative for tc. - Set analog input to match sensor. - Check sensor isolation. Inputs 2 and 3 are not isolated from each other.
Upper SEnt , Lower !!nput Sensor $x+$ (x is 1 to 3)	- Sensor open. - Sensor wired backwards. Display decreases as process increases. - Input type set to wrong sensor. - Ground loop	- Repair or replace sensor. - Reverse sensor wiring connections. Red lead is usually negative for tc. - Set analog input to match sensor. - Check sensor isolation. Inputs 2 and 3 are not isolated from each other.
Upper Rtod Lower !Timeout x	- Component failure.	- Return to factory for evaluation.

Indication	Probable Cause(s)	Corrective Action
Upper Lower ! Input x Error (x is 1 to 3)	- Component failure.	- Return to factory for evaluation.
Upper Lower Slidewire time out	- Slidewire time out value set too short. - Slidewire valve is stuck or not responding. - Process valve is wired incorrectly or incompatible.	- Increase slidewire time out value. - Replace process valve. - Increase slidewire time out value. - Check wiring and process valve for compatibility.
Upper Lower Slidewire time out	- Process valve is wired incorrectly or incompatible.	- Check wiring and process valve for compatibility.
System Errors (Upper Display shows error numbers. Lower Display messages indicate cause and action to take.)		
- Zero Cross Failure! Switched to Fixed Time control.	- Controller can't detect zero cross point. Noise is present on AC power line or unit is not powered by AC voltage.	- Add filter to AC power line and verify unit is power by $A C$ voltage.
- Unknown Error! Record this number. Contact the factory.	- Component failure.	- Contact factory for further information and diagnosis.
- Incorrect ID!	- A module has lost its programming ID.	- Replace module or return controller to factory for repair
- Verify Input 1 - Verify Input 2 or 3	- Input module 2 or 3 is in input 1 slot. - Input module 1 is in input 2 or 3 slot.	- Move module to correct input slot. - Move module to correct input slot.
- Output 1A - Output 1B - Output 2A - Output 2A	- Output module failure.	- Replace output module.
- Module not allowed	- Module installed incorrectly or in wrong slot.	- Check for correct installation of module.
- Verify the module.	- Module not seated correctly in slot.	- Check for correct installation of module.
- Retransmit 1 Module Error! Only process modules supported.	- Wrong module in retransmit 2 slot.	- Replace incorrect module with retransmit module.
- Retransmit 2 Module Error! Only process modules supported.	- Wrong module in retransmit 2 slot.	- Replace incorrect module with retransmit module.
- Module change. Defaults will occur. Accept with any key.	- Module changed.	- Press any key. All parameters will default.
- Checksum error in Cycle device power.	- Noise on power line. - Component failure.	- Add power line filter for input power. - Return controller to factory for repair.

Indication	Probable Cause(s)	Corrective Action
- Module change. All parameters are initializing.	- Input or output module was changed.	- This is normal upon module change.
- First power-up. Parameters are initializing.	- Controller powered up for the first time.	- Should not appear in the field. Call the factory if you get this message.
- RAM Test Failed! Return controller to the Factory.	- Component failure.	- Return controller to factory for repair.
- Flash Memory Failed! Return controller to the Factory.	- Power was interrupted during a flash update or there is a component failure.	- Return controller to factory for repair.
- Firmware change. Parameters are initializing.	- Controller firmware has been updated.	- Normal operation following flash update of firmware.
- Checksum Error! Parameter memory. - Checksum Error! Unit Config memory - Checksum Error! Profile memory.	- Power line noise has corrupted memory.	- Turn the controller off, then on again. If problem persists, power line filter is required.
- RAM Test Failed! Return controller to the Factory.	- Controller has failed.	- Return controller to factory for repair.
- Flash memory Failed. Return controller to the Factory.	- Controller has failed.	- Return controller to factory for repair.
Open Loop Detect (Upper Display shows error code for input 1 only. Lower Display shows additional errors. Upper: OPLP Lower: Open Loop		- Check all wiring and components. - Turn the controller off, then on again.
	- Sensor not properly located - Output relay open or shorted. - Sensor shorted. - Heater/cooling non-functional.	- Place sensor near source. - Replace relay. - Replace sensor. - Repair heating/cooling circuits. - Check circuit breakers, switches, heater elements, compressor.

Notes:

Chapter Three: Operations Page

Alarm Set Points 3.1
Autotune PID 3.2
Edit PID 3.2
Multiple PID Sets 3.3
Cascade Tuning 3.3

This chapter explains how to establish alarm set points, autotune and manually tune and establish cascade control through the Operations Page of the software.
To configure the alarm outputs, go to the Setup Page of the software (see related information in the Parameters Chapter).
For the alarm clearing procedure, go to the Troubleshooting Alarms and Errors table in the Navigation and Operating from the Front Panel Chapter.
For background information about alarms; proportional, integral and derivative control; and cascade, see the Features Chapter.

Alarm Set Points

The Series F4P includes two alarm outputs, which can be programmed as process, deviation or rate alarms.
Process alarms notify the operator when process values exceed or fall below Alarm Low and Alarm High Set Points. Deviation alarms notify the operator when the process has deviated from the set point beyond the deviation limits. Rate alarms are triggered by a change in temperature or process value that is faster than the selected rate.
For more information, see the Features Chapter. To set up the alarms, see the Setup Chapter.
Alarm set points are the points at which alarms switch on or off, depending on the alarm setting. Alarm set points can be viewed or changed in the Alarm Set Point Menus (Operations Page).
The Alarm High Set Point defines the high value that, if exceeded, will trigger an alarm. This value must be higher than the alarm low set point and lower than the high limit of the sensor range.

The Alarm Low Set Point defines the low value that, if exceeded, will trigger an alarm. This value must be lower than the alarm high set point and higher than the low limit of the sensor range.
The Alarm Low Deviation defines the deviation value on the low side of set point at which the alarm will be triggered.
The Alarm High Deviation defines the deviation value on the high side of set point at which the alarm will be triggered.
\checkmark Note: You may want to set up the alarms with names that will identify the alarm conditions. See the Setup Page.

To Clear an Alarm or Error

In an alarm condition, the alarm status light will be lit. An alarm message will appear on the Main Page if configured to do so. To silence an alarm, the Silencing option in the Alarm Output menu (Setup Page) must be enabled. To silence the alarm, move the cursor to the alarm message and press the Right key. A message will confirm the silencing of the alarm, and the alarm status light will turn off. After correcting the condition that caused the error or alarm, return to the error or alarm message on the Main Page, and press the Right key again. A message will confirm that the alarm is unlatched.

Autotune PID

In autotuning, the controller automatically selects the PID parameters for optimal control, based on the thermal response of the system. In the Series F4P, five sets of PID values are available. Default PID values exist for all PID sets, although these values typically do not provide optimal control. PID values can be auto-tuned or adjusted manually. When autotuning is complete, the PID values will be stored in the Edit PID Menu.
Set point changes for remote, ratio and differential control are ignored until autotuning is complete.

Autotuning Procedure

Autotuning is initiated from the Operation Menu.

1. Before initiating auto-tune, go to the System Menu (Setup Page), and establish the Autotune Set Point to a percentage of set point. This percentage is based on your knowledge of the system and how much overshoot or undershoot there is likely to be in on-off control.
Select to display Tune Status in the Custom Main Page Menu.
2. Go to the Main Page and adjust set point.
3. Go to the Autotune PID Menu (Operations Page) and choose the PID set in which to store the values. You must exit back to Main Page with the left arrow. A message will be displayed on the Main Page during the autotuning process.
4. When autotuning is complete, the controller will store the values for optimum control in the specified PID set.
For additional information about autotuning and proportional, integral and derivative control, see the Features Chapter.
\checkmark Note: While the controller is autotuning, only the Operation Page of the software can be entered.

CAUTION: Choose an autotune set point value that will protect your product from possible damage from overshoot or undershoot during the autotuning oscillations. If the product is sensitive, select the autotune set point very carefully to prevent product damage.

Edit PID

The E dit PID Menu is useful when Auto-tune PID does not provide adequate control. E ach of the PID parameters can be adjusted manually:
Proportional Band: Define a band for PID control, entered in degrees or units. Lower values increase gain, which reduces droop but can cause oscillation. Increase the proportional band to eliminate oscillation.
Integral (Reset): Define the integral time in minutes per repeat; define reset in repeats per minute. Set repeats per minute if units are U.S.; minutes per repeat if units are SI.
Derivative (Rate): Define the derivative (rate) time in minutes. Large values prevent overshoot but can cause sluggishness. Decrease if necessary.
Dead Band: Define the dead band in degrees or units. Heating dead band shifts the set point down. Cooling dead band shifts the set point up. For more information, see the Features Chapter.
For background information, see Chapter 7, Features.

Manual Tuning Procedure

1. Apply power to the Series F4P and establish a set point on the Main Page.
2. Establish Cyde Time in the Control Output Menu (Setup Page), as required. Typical cycle times are 1.0 second for an SSR and 5.0 seconds for a mechanical relay. Faster cycle times sometimes achieve the best system control. However, if a mechanical contactor or solenoid is switching power to the load, a longer cycle time may be desirable to minimize wear on the mechanical components. Experiment until the cycle time is consistent with the desired quality of control.
3. Go to the Edit PID Menu (Operations Page), and choose the channel and PID set. Establish values for the PID parameters: Proportional Band, 5; Integral (Reset), 0; Derivative (Rate), 0; and Autotune, Tune Off. Tuning begins when you choose a PID set.
4. When the system stabilizes, watch the value of Input 1 on the Main Page. If this value fluctuates, increase the proportional band setting until it stabilizes. Adjust the proportional band in 3° to 5° increments, allowing time for the system to stabilize between adjustments.
5. When Input 1 has stabilized, watch the percent power on the Main Page. It should be stable, $\pm 2 \%$. At this point, the process temperature should also be stable, but it will exhibit droop (stabilized below set point). The droop can be eliminated with integral (reset).
6. Start with an integral setting of 99.9 minutes and allow 10 minutes for the process temperature to get to set point. If it has not, decrease the setting by half and wait another 10 minutes. Then halve the setting again and wait another 10 minutes until the process value equals the set point. If the process becomes unstable, the integral value is too small. Increase it until the process stabilizes.
7. Increase Derivative/Rate to 0.10 minute. Then increase the set point by 11° to $17^{\circ} \mathrm{C}$. Watch the system's approach to the set point. If the process value overshoots the set point, increase Derivative/Rate to 0.50 minute.

Increase the set point by 11° to $17^{\circ} \mathrm{C}$ and watch the approach to the new set point. If you increase Derivative/Rate too much, the approach to the set point will be very sluggish. Repeat as necessary until the system rises to the new set point without overshoot or sluggishness.
For additional information about the burst fire feature, manual tuning and PID control, see the Features Chapter.

Multiple PID Sets

Environmental chambers, ovens and furnaces typically have different thermal requirements at high and low temperatures or pressures. To accommodate this, the Series F4P can store five different PID sets.

Multiple Tuning Procedure

To autotune multiple PID sets, follow the Autotuning procedure above for each PID set. When autotuning is finished for one set, proceed with another.

Cascade

Cascade control is available on enhanced (F4P _ _ _ AB - _ _ _ _) Series F4P controllers. F or background information about cascade control, see the F eatures Chapter.
Select cascade control through the Analog Input 3 M enu (Setup Page), and choose Process Cascade or Deviation Cascade. To set the range for the inner loop set point, Process Cascade uses Low and High Range settings that are independent of set point; Deviation Cascade uses Deviation Low and High settings that are deviations from the primary set point.
When tuning a cascade system, the inner loop must be tuned first. The inner loop comprises outputs 1A and 1B and the Analog Input 1 sensor, which usually measures the energy source temperature. The output device controls a power switching device, which in turn switches
the heating and cooling. The set point for the inner loop is generated by the outer loop. F or Process Cascade, this will have a range between the Cascade Low Range and Cascade High Range.

Cascade Setup Procedure

1. First, configure Analog Input 3, Cascade Low Range and Cascade High Range.
Go to the Analog Input 3 Menu (Setup Page). Choose Process or Deviation Cascade. Deviation Cascade references Channel 1 set point allowing a range above and bel ow the current control set point. F or Process Cascade control of a heat/cool or cool only system, set the Cascade Low Range to a value slightly lower than the lowest temperature desired in the chamber. For heat-only systems, set the Cascade Low Range to a value slightly lower than the ambient temperature; otherwise the heat output will never turn fully off.
F or heat/cool or heat only systems, set the Cascade High Range to a value slightly higher than the highest temperature desired in the chamber. For cool-only systems, set the Cascade High Range to a value slightly higher than the ambient temperature; otherwise the cooling will never fully turn off.
2. Next, configure the controller to tune and display data for the outer loop. To view Inner Loop Set Point in the upper display, go to the Setup Page, Custom Main Page Menu, select the Inner Set point as one of the parameters, P1 to P16, to be displayed in the Main Page.
To also view Analog Input 3 in the upper display, go to the Setup Page, Process Display Menu, and choose AIternating. Under Set Display Time, choose a duration for the display of the Input 1 and Input 3 variables.

Cascade Autotuning Procedure

1. Go to Setup Page, Custom Main Page Menu. Choose Tune Status 1 and Tune Status 2 to appear as 2 of the 16 parameters that can be displayed on the Main Page. The Main Page will now display the status of the autotuning process.
2. Autotune the inner loop. Go to the Autotune PID Menu (Operations Page), and select Cascade Inner-loop. Choose Cascade Inner Loop PID Set 1 to 5, where PID values will be stored after autotuning. Autotuning begins when you choose the PID set. While autotuning, the F4 controller will control the energy source in an on-off mode to a temperature equal to the Cascade High Range setting x Channel 1 Autotune Set Point. For best results, use proportional control only on the inner loop.
3. Next, autotune the outer loop. Go to the Autotune PID Menu (Operations Page). Choose Cascade Outer Loop, then choose Outer Loop PID set 1 to 5, where PID values will be stored after autotuning. Autotuning begins when you choose the PID set. While autotuning, the outer loop will be controlled in an on-off mode at a set point equal to static set point \times Ch 1 Autotune Set Point. In most cases, the autotuning feature will tune for acceptable control. If not, manually tune the outer loop (step 4 below). Before manually tuning, record the values generated by the autotuning feature.
4. To manually tune the outer loop, go to the Edit PID Menu (Operations Page). Choose Cascade Outer Loop, then choose Outer Loop PID set 1 to 5. Begin manual tuning by setting the Proportional Band to 5, Integral (Reset) to 0, and Rate to 0. Establish the desired set point and let the system stabilize. When the system stabilizes, watch the Inner Loop Set Point on the Main Page. If this value fluctuates, increase the proportional band until it stabilizes. Adjust the proportional band in 3° to 5° increments, allowing time for the system to stabilize between adjustments.
5. When Input 1 has stabilized, watch the percent power on the Main Page. It should be stable, $\pm 2 \%$. At this point, the process temperature should also be stable, but it will exhibit droop (stabilized below set point). The droop can be eliminated with Integral (reset).
6. Start with an integral setting of 99.9 minutes, and allow 10 minutes for the process temperature to come up to set point. If it has not, decrease the setting by half and wait another 10 minutes. Then halve the setting again and wait another 10 minutes until the process value equals the set point. If the process becomes unstable, the integral value is too small. Increase it until the process stabilizes.

Chapter Four: Setup Page

Parameter Setup Order 4.1
Customizing the Main Page 4.2
Static Messages 4.2

This chapter explains how to configure the controller software through the Setup Page menus. Setup Page parameters affect the way the controller responds to your application, which parameters and functions are visible in other pages, and the way information is displayed on the Main Page. Set up the controller properly to provide a sound foundation for settings in other pages.
For ranges, defaults and other information about specific parameters, see the Parameters Chapter. Record your settings in the Parameter Setup Record, also in that chapter.
For background information about inputs, outputs, alarms and other features, see the F eatures Chapter.

Parameter Setup Order

Initial configuration of the Series F4P is best done in the following order:

1. Go to the System Menu (Setup Page) to configure:

- PID units - SI (Integral, Derivative) or U.S. (Reset, Rate);
- Celsius or F ahrenheit scales;
- display of units in the controller's upper display;
- Autotune set point;
- open-loop detection warnings; and
- controller response to a power outage.

2. Go to other menus on the Setup Page to configure:

- Analog Input x (1 to 3);
- Digital Input x (1 to 4);
- Control Output x (1A, 1B);
- Alarm Output x (1 or 2);
- Retransmit Output x (1 or 2);
- Communications; and
- Custom Main Page and Custom Messages.

3. Go to the Operations Page to tune the PID sets.
4. Go to the Operations Page to set the alarm set points.
After this initial configuration, the most frequent changes will be to the Operations Page (alarm set points and PID sets).
If the Series F4P is already installed in an environmental chamber, oven, furnace or other equipment, most parameters will already be configured and access to the Setup Page may be limited (see Chapter 5, F actory Page).
Changing Setup Page parameters may change other parameters. In some cases, a change in one parameter will affect the defaults of others. To see how all the pages, menus and parameters are grouped, see the software map on the inside back cover of this manual.
\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.
\. WARNING: Only authorized and qualified personnel should change the factory-default settings, which may cause changes in other settings. Failure to comply with this recommendation may result in damage to equipment and property and injury to personnel.

Customizing the Main Page

Up to 16 lines can be added to the Main Page to display status and information from the controller.
Go to the Custom Main Page Menu on the Setup Page. The first screen will prompt you to choose one of the 16 lines to customize. "P1 Parameter" is the first line; "P16 Parameter" is the 16th. After choosing this line by pressing \boldsymbol{D}, select a parameter to monitor.
Your choices are listed under Custom Main Page in the Setup Page Parameter Table in this chapter.
P1 Parameter
P2 Parameter
P3 Parameter
Choose P:1 Display
Choose P:1 Display
>None
>None
Input 1 Value
Input 1 Value
Input 1 Value bar
Input 1 Value bar

Input1	$26^{\circ} \mathrm{C}$
PID Set	1
Power1A	0%
Power1B	55%
DigitalIn	-234

Figure 4.2 - Example of Parameters on the Custom Main Page.

Static Messages

Digital inputs can be configured to display a message that the user enters. The message is displayed on the Main Page when the digital input is active.
This feature could, for instance, display "DOOR OPEN" if an oven door is not closed all the way.

Chapter Five: Factory Page

\qquad
Security5.1
Diagnostics 5.3
Calibration 5.3

Security

The Series F4P allows users to set separate security levels for the Static Set Point prompt on the Main Page, for all menus on the Operations Page, as well as for the Setup Page and Factory Page. Four levels of security are available:

- Full Access (operators can enter and change settings);
- Read Only (operators can read but not change settings);

How to Set Lockout Levels

Using the Lockout Menu, you can limit access to the following menus and pages:

- Set Point on Main Page
- Operations Page Autotune PID
- Operations Page E dit PID
- Operations Page Alarm Set Point
- Setup Page
- Factory Page

Choose the item to lock out, press ©. and choose the level of access: Full, Read Only, Password or Hidden. If you choose Password, you must set the password - see below.
\checkmark Note: F or more information about how parameter settings affect the controller's operation, see the F eatures Chapter.
. CAUTION: Only authorized and qualified personnel should be allowed to perform preventive and corrective maintenance on this unit.

- Password (operators can enter and change settings after entering a password); and
- Hidden (operators cannot see the menu or page - it is not displayed). Set Point settings cannot be Hidden.
\checkmark Note: Full Access is the default for all menus. Unless you change the level of access, operators will be able to read and change every setting in every menu in the Series F4P software.

```
Main>Factory
>Set Lockout
    Diagnostic
    Test
```

```
...Factory>Set Lock
    Set Point
>Oper. Autotune PID
    Oper. Edit PID
...Lock>Autotune PID
    Ful1 Access
    Read On1y
>Password
```


Enter a Password

If you try to set password security before any password has been established, a pop-up message will give you the opportunity to enter one. Use the $\boldsymbol{O}, \boldsymbol{0}, \boldsymbol{0}$ and $\boldsymbol{\nabla}$ keys to enter a four-character password, which can consist of letters, numbers or both. After entering and confirming the password, re-enter the chosen menu or page and select Password Security. Record your password and keep it secure.

Use a Password

To enter a password-protected area, users must enter the password. If an incorrect password is entered, a pop-up message will tell you it is invalid and you may try again. When the password is correct, choose again to enter the menu or page of your choice.

Change a Password

The Change Password parameter is near the end of the list under Set Lockout on the F actory Page. To change a password, you must first enter the old password for confirmation.

```
    No Password!
    Set Password?
        \nablaNo A Yes
■■■■■■■■■■■■■■
```

```
Must reset lock
after setting the
```

password
■■■Press any key! ■■■
Enter New Password:

- $\boldsymbol{\nabla}$ Adjusts Char
< Back >Next
Confirm Password:
- $\boldsymbol{\nabla}$ Adjusts Char
< Back $>$ Next

```
Invalid, Re-Enter:
- \(\boldsymbol{\nabla}\) Adjusts Char
        < Back >Next
```

\qquad

Enter Password:

- $\boldsymbol{\nabla}$ Adjusts Char
< Back $>$ Next

Diagnostics

Diagnostic Menu parameters (on the F actory Page) provide information about the controller unit that is useful in troubleshooting. F or example, the Out1A parameter will identify what type of output has been selected for Output 1A.
Select the parameter by pressing the Right Key \boldsymbol{D}. The information will appear on the Lower Display.
Some of the parameters in the Diagnostic Menu provide information for factory use only.
To reset all parameters to their original factory values, use the Full Defaults parameter under the Test Menu.

Test

This menu allows you to test outputs, test the displays (upper, lower and status lights), and cause the controller to revert to the defaults set at the factory. Reverting to factory defaults will erase all preset software and the controller will return to U.S. PID units (Reset and Rate) and the F ahrenheit temperature scale.

Calibration

The Calibration Menu on the Factory Page allows calibration of inputs and outputs. Calibration procedures should be done only by qualified technical personnel with access to the equipment listed in each section.
Before beginning calibration procedures, warm up the controller for at least 20 minutes.

Restore Factory Values

E ach controller is calibrated before leaving the factory. If at any time you want to restore the factory input calibration values, use the last parameters in the menu: Restore Input x (1 to 3) Calibration. Press O.. No special equipment is necessary.

Thermocouple Input Procedure

Equipment

- Type J reference compensator with reference junction at $32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$, or typeJ thermocouple calibrator to $32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$.
- Precision millivolt source, 0 to 50 mV minimum range, 0.002 mV resolution.

Input x (1 to 3) Setup and Calibration

Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- _ _ AB - \qquad

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).
2. Connect the millivolt source to input 1 terminals 62 $(-)$ and $61(+)$, input 2 terminals $58(-)$ and $57(+)$, or input 3 terminals $56(-)$ and $55(+)$, with copper wire.
3. Enter 50.000 mV from the millivolt source. Allow at least 10 seconds to stabilize. Press the Right Key \boldsymbol{D} once at the Calibrate Input x (1 to 3) prompt (Factory Page). At the 50.00 mV prompt press \boldsymbol{D} once and to store 50.00 mV press the Up Key © once.
4. Enter 0.000 mV from the millivolt source. Allow at least 10 seconds to stabilize. At the 0.00 mV prompt press \boldsymbol{D} once and to store 0.00 mV press $\boldsymbol{0}$ once.
5. Disconnect the millivolt source and connect the reference compensator or thermocouple calibrator to input 1 terminals $62(-)$ and $61(+)$, input 2 terminals 58 (-) and 57 (+), or input 3 terminals 56 (-) and 55 $(+)$. With typeJ thermocouple wire, if using a compensator, turn it on and short the input wires. When using a type J calibrator, set it to simulate $32^{\circ} \mathrm{F} / 0^{\circ} \mathrm{C}$. Allow 10 seconds for the controller to stabilize. Press 0 once at the Calibrate Input x (1 or 2) prompt (Factory Page). At the $32^{\circ} \mathrm{F}$ Type J prompt press \boldsymbol{D} once and to store typeJ thermocouple calibration press $\mathbf{0}$ once.
6. Rewire for operation and verify calibration.

RTD Input Procedure

Equipment

- $1 \mathrm{k} \Omega$ decade box with 0.01Ω resolution.

Input x (1 to 3) Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).
2. Short Input 1 terminals 60,61 and 62 ; Input 2 terminals 54, 57 and 58; or Input 3 terminals 52,55 and 56 together with less than 0.1Ω. Press the Right Key 0 once at the Calibrate Input x (1 to 3) prompt. At the Ground prompt press 0 once and to store ground input press the Up Key 0 once.
3. Short Input 1 terminals 60 and 61 ; Input 2 terminals 54 and 57; or Input 3 terminals 52 and 55 together with less than 0.5Ω. Press 0 once at the Calibrate Input x (1 to 3) prompt. At the Lead prompt press \boldsymbol{D} once and to store lead resistance press 0 once.
4. Connect the decade box to Input 1 terminals 60 (S2), 61 (S1) and 62 (S3); Input 2 terminals 54 (S2), 57 (S1) and 58 (S3); or Input 3 terminals 52 (S2), 55 (S1) and 56 (S3), with 20- to 24 gauge wire.
5. For 100Ω RTD, enter 15.00Ω. F or 500Ω or $1 \mathrm{k} \Omega$ RTD, enter 240.00Ω. Allow at least 10 seconds to stabilize. Press 0 once at the Calibrate Input x (1 to 3) prompt (F actory Page). At the 15.00Ω or $240.00 \Omega^{*}$ RTD prompt press 0 once and to store the 15.00 ת or 240.00Ω input press 0 once.
6. For 100Ω RTD, enter 380.00Ω. For 500Ω or $1 \mathrm{k} \Omega$ RTD, enter 6080.00Ω. Allow at least 10 seconds to stabilize. Press 0 once at the Calibrate Input x (1 to 3) prompt. At the 380.0Ω or $6080.00 \Omega^{*}$ RTD prompt press \mathcal{D} once and to store the 380.00Ω or 6080.00Ω input press 0 once.
7. Rewire for operation and verify calibration.

\checkmark NOTE:

You need the equipment listed and technical skills. Control lers come cali brated from the factory. Recalibrate only for other agency requirements or if temperatures aren't accurate as verified by another calibrated instrument.

Slidewire Feedback Input Procedure

Equipment

- $1 \mathrm{k} \Omega$ decade box with 0.01Ω resolution.

Input 3 Setup and Calibration

Input 3 appears only if the controller is the enhanced version (F4P _ - _ AB - _ _ _).

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).
2. Connect the decade box to I nput 3 terminals 55 (S1) and 56 (S3), with 20 - to 24 -gauge wire.
3. Enter 15.00Ω. on the decade box. Allow at least 10 seconds to stabilize. Press 0 once at the Calibrate Input 3 prompt (Factory Page). At the $15.00 \Omega \mathrm{SIWr}$ prompt press 0 once and to store the 15.00Ω input press 0 once.
4. Enter 1000.00Ω. from the decade box. Allow at least 10 seconds to stabilize. Press 0 once at the Calibrate Input 3 prompt. At the 1000.00Ω SIWr prompt press \boldsymbol{D} once and to store the 380.00Ω or 6080.00Ω input press 0 once.
5. Rewire for operation and verify calibration.

Voltage Process Input Procedure

Equipment

- Precision voltage source, 0 to 10 V minimum range, with 0.001 V resolution.

Input x (1 to 3) Setup and Calibration

Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ AB - _ _ _).

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).
2. Connect the voltage source to input 1 terminals 59 $(+)$ and $62(-)$, input 2 terminals $53(+)$ and $58(-)$ or input 3 terminals $51(+)$ and $56(-)$.
3. Enter 0.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press the Right Key 0 once at the Calibrate Input 1 prompt. At the 0.000 V prompt press \boldsymbol{D} once and to store the 0.000 V input press the Up Key $\mathbf{0}$ once.

[^0]4. Enter 10.000 V from the voltage source to the controller. Allow at least 10 seconds to stabilize. Press \boldsymbol{D} once at the Calibrate Input 1 prompt. At the 10.000 V prompt press 0 once and to store the 10.000 V input press $\mathbf{0}$ once.
5. Rewire for operation and verify calibration.

Current Process Input Procedure

Equipment

- Precision current source, 0 to 20mA range, with 0.01 mA resolution.

Input x (1 to 3) Setup and Calibration

Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- _ $A B$ - _ _ _ _ $^{\text {) }}$).

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).
2. Connect the current source to input 1 terminals 60 $(+)$ and $62(-)$, input 2 terminals $54(+)$ and $58(-)$, or input 3 terminals $52(+)$ and 56 (-).
3. Enter 4.000 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press the Right Key \boldsymbol{D} once at the Calibrate Input 1 prompt. At the 4.000 mA prompt press \boldsymbol{D} once and to store 4.000 mA press the Up Key $\mathbf{0}$ once.
4. Enter 20.000 mA from the current source to the controller. Allow at least 10 seconds to stabilize. Press \boldsymbol{D} once at the Calibrate Input 1 prompt. At the 20.000 mA prompt press \boldsymbol{D} once and to store 20.000 mA press 0 once.
5. Rewire for operation and verify calibration.

Process Output Procedure

Equipment

- Precision volt/ammeter with 3.5-digit resolution.

Output 1A Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 42 (+) and 43 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Output 1A prompt. At the 4.000 mA prompt press \boldsymbol{O} once. Use the Up Key \mathbf{O} or the Down Key \mathbf{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press D to store the value.
4. Press the Right Key D at the Calibrate Output 1A prompt. At the 20.000 mA prompt press \boldsymbol{O} once. Use the Up Key \mathbf{O} or the Down Key \boldsymbol{D} to adjust the
display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 44 (+) and 43 (-).
6. Press the Right Key \boldsymbol{O} at the Calibrate Output 1 A prompt. At the 1.000 V prompt press \boldsymbol{O} once. Use the Up Key $\boldsymbol{0}$ or the Down Key $\boldsymbol{0}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press 0 to store the value.
7. Press the Right Key 0 at the Calibrate Output 1A prompt. At the 10.000 V prompt press \boldsymbol{O} once. Use the Up Key $\mathbf{0}$ or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Output 1B Setup and Calibration

1. Connect the correct power supply to terminals 1, 2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 39 (+) and 40 (-).
3. Press the Right Key © at the Calibrate Output 1B prompt. At the 4.000 mA prompt press \boldsymbol{O} once. Use the Up Key \mathbf{O} or the Down Key \mathbf{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press \boldsymbol{D} to store the value.
4. Press the Right Key D at the Calibrate Output 1B prompt. At the 20.000 mA prompt press \boldsymbol{D} once. Use the Up Key \mathbf{O} or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 41 (+) and 40 (-).
6. Press the Right Key \boldsymbol{O} at the Calibrate Output 1B prompt. At the 1.000 V prompt press 0 once. Use the Up Key \boldsymbol{O} or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press \boldsymbol{D} to store the value.
7. Press the Right Key \boldsymbol{D} at the Calibrate Output 1B prompt. At the 10.000 V prompt press \boldsymbol{D} once. Use the Up Key \mathbf{O} or the Down Key $\boldsymbol{0}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Retransmit Output Procedure

Equipment

- Precision volt/ammeter with 3.5-digit resolution.

Retransmit 1 Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals 50 (+) and 49 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 1 prompt. At the 4.000 mA prompt press 0 once. Use the Up Key \mathbf{O} or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press \boldsymbol{D} to store the value.
4. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 1 prompt. At the 20.000 mA prompt press \boldsymbol{D} once. Use the Up Key \mathbf{O} or the Down Key \mathbf{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 48 (+) and 49 (-).
6. Press the Right Key \boldsymbol{O} at the Calibrate Rexmit 1 prompt. At the 1.000 V prompt press 0 once. Use the Up Key $\boldsymbol{0}$ or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press \boldsymbol{D} to store the value.
7. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 1 prompt. At the 10.000 V prompt press 0 once. Use the Up Key $\mathbf{0}$ or the Down Key $\mathbf{0}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press 0 to store the value.
8. Rewire for operation and verify calibration.

Retransmit 2 Setup and Calibration

1. Connect the correct power supply to terminals 1,2 and 3 (see the Installing and Wiring Chapter and the Appendix).

Milliamperes

2. Connect the volt/ammeter to terminals $47(+)$ and 46 (-).
3. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 2 prompt. At the 4.000 mA prompt press 0 once. Use the Up Key \mathbf{O} or the Down Key $\boldsymbol{0}$ to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 4.000 mA . Press 0 to store the value.
4. Press the Right Key \boldsymbol{D} at the Calibrate Rexmit 2 prompt. At the 20.000 mA prompt press \boldsymbol{D} once. Use the Up Key \mathbf{O} or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 20.000 mA . Press \boldsymbol{D} to store the value.

Volts

5. Connect the volt/ammeter to terminals 45 (+) and 46 (-).
6. Press the Right Key \boldsymbol{O} at the Calibrate Rexmit 2 prompt. At the 1.000 V prompt press \boldsymbol{D} once. Use the Up Key $\mathbf{0}$ or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 1.000 V . Press \boldsymbol{D} to store the value.
7. Press the Right Key \boldsymbol{O} at the Calibrate Rexmit 2 prompt. At the 10.000 V prompt press \boldsymbol{D} once. Use the Up Key $\mathbf{0}$ or the Down Key \boldsymbol{D} to adjust the display to the reading on the volt/ammeter. The controller should stabilize within one second. Repeat until the volt/ammeter reads 10.000 V . Press \boldsymbol{D} to store the value.
8. Rewire for operation and verify calibration.

Chapter Six: Parameters

Pages, Menus and Parameters 6.1
Main Page 6.2
Operations Page Parameter Table 6.4
Operations Page Parameter Record 6.10
Setup Page Parameter Table 6.11
Setup Page Parameter Record 6.23
Custom Main Page Parameter Record 6.25
Factory Page Parameter Table 6.26

Pages, Menus and Parameters

The Series F4P parameters are arranged into four groups, or pages: Main; Operations, Setup and Factory. See the chapters about each page for additional information. The Features Chapter provides information about features, such as alarms, and the parameters that apply to them.
Only active parameters will appear on the controller. If, for instance, Output 1B is set to Off, no other output 1B parameters will appear.
Changing some parameters will force changes to other parameter settings. The safest and most efficient way to configure the Series F4P controller for the first time is to configure the parameters in the Setup Page in the order in which they appear.
It may also be helpful for you to make copies of the Parameter Records for each of the pages, as well as the Custom Main Page Record, then record your settings for future reference.
\checkmark Note: If the Series F4P is already installed in an oven, furnace or other equipment, most parameters will already be configured and access to the Setup Page may be limited (locked).
\checkmark Note: To see how all the pages, menus and parameters are grouped, see the software map on the inside back cover of this manual.
\checkmark Note: For more information about how parameter settings affect the controller's operation, see the F eatures Chapter.

Main Page Parameters

Parameter Description Main Page	$\begin{gathered} \text { Range } \\ \text { (Modbus Value) } \end{gathered}$	Default	Modbus Register read/write (I/O, Set)	Conditions for Parameters to Appear
Main Page				
Input x (1 to 3) Error Alarm x (1 to 2) Condition Parameter x (1 to 16) View customized parameter list.	None Input 1 [value] Input 1 Value bar [graph] Input 2 [value] Input 2 Value bar [graph] Input 3 [value] Input 3 Value bar [graph] Dgt. [digital] Diff. [dif- ferential] Value CTL SP [Differential Set Point] Set Differential Dgt. [digital] Ratio Value CTL SP [Ratio Set Point] Set Ratio Digital Set Point Remote Set Point 2 Remote Set Point 3 Target Set Point [cascade] Inner Set Point Set Point 1 Set Point 1 bar [graph] \% Power 1A \% Power 1B \% Power 1A bar [graph] \% Power 1B bar [graph] Tune Status 1 Digital Inputs	[Defaults depend on the control type selected and settings in Setup>Custom Main Page.]		

Go to Operations
Auto-tune PID sets, edit PID parameters, select alarm set points, select PID crossover, select ramp to set point, select control set points, and mode.

Go to Setup

Set up inputs and outputs, configure the system, design the Main Page, configure alarms, configure communication, and define static messages.
Go to Factory
Set security settings, calibrate and restore factory settings, perform diagnostics, test outputs.
\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Operations Page Parameters

PID Set x (1 to 5)* (Optional Inner Loop)

Main > Operations > Edit PID > PID Set Channel $1>$ PID Set \mathbf{x} (1 to 5)
$\left.\begin{array}{l|l|l|lll|l}\hline \text { Proportional Band } \mathbf{x} \text { (A or } & 0 \text { to } 30000 & 25^{\circ} \mathrm{F} & 1 \mathrm{~A} & 18 & \text { Set } & \text { Active: Always.* Based on deci- } \\ \text { B) } & 0.0 \text { to } 3000.0 & 14^{\circ} \mathrm{C} & 500 & 550 & {[1]} & 510 \\ \hline\end{array}\right)$
\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Operations Page Parameter Table

Modbus Register read/write (I/O, Set) Default
0 minutes

0 per minute $\begin{array}{lll}1 A & 1 B & \text { Set } \\ 502 & 552 & {[1]} \\ 512 & 562 & {[2]}\end{array}$ 522572 [3] 532 582 [4] 542 592 [5]
0.00 minutes

1A	1B	Set
503	553	$[1]$
513	563	$[2]$
523	573	$[3]$
533	583	$[4]$
543	593	$[5]$
r/w		

$1 A$	$1 B$	Set
504	554	$[1]$
514	564	$[2]$
524	574	$[3]$
534	584	$[4]$
544	594	$[5]$

r/w

1A	1B	Set
505	555	$[1]$
515	565	$[2]$
525	575	$[3]$
535	585	$[4]$
545	595	$[5]$
r/w		

$\begin{array}{lll}\text { 1A } & 1 B & \text { Set } \\ 507 & 557 & {[1]} \\ 517 & 567 & {[2]} \\ 527 & 577 & {[3]} \\ 537 & 587 & {[4]} \\ 547 & 597 & {[5]} \\ \text { r/w } & & \end{array}$
Conditions for
Parameters to Appear
Active if PID Units (Setup Page)
is set to SI and Proportional
Band is not set to 0.*
Active if PID Units (Setup Page)
is set to U.S. and Proportional
Band is not set to 0.*

Active if PID Units (Setup Page)
is set to SI and Proportional
Band is not set to 0.*

Active if PID Units (Setup Page)
is set to U.S. and Proportional
Band is not set to 0.*
Active if Proportional Band is not
set to 0 and one output is set to
heat and the other to cool
(Setup Page).* Based on decimal
setting.
Active if Proportional Band is set
to 0 and one output is set to
heat and the other to cool
(Setup Page).* Based on dial
setting.

* None of the B parameters are active if both outputs are set to cool or heat.

Cascade Outer Loop PID Set x (1 to 5)
Main > Operations > Edit PID > Cascade Outer Loop PID Set X (1 to 5)

Parameter Description	Range (Modbus Value)	Default	read/write (I/O, Set)	Conditions for Parameters to Appear
Reset x (A or B) Set the reset time in repeats per minute.	0.00 per minute to 99.99 per minute (0 to 9999)	0 per minute	1A 1B Set 2602 2612 $[1]$ 2622632 $[2]$ 2642 2652 $[3]$ 2662 2672 $[4]$ 2682692 $[5]$ r/w	Active if Control Type (Analog Input 3) is set to Cascade, PID U nits (Setup Page) is set to U.S. and Proportional Band is not set to 0.*
Derivative x (A or B) Set the derivative time. [or]	0.00 to 9.99 minutes (0 to 999)	0.00 minutes	$\begin{array}{lll} \text { 1A } & \text { 1B } & \text { Set } \\ 2603 & 2613 & {[1]} \\ 2623 & 2633 & {[2]} \\ 26432653 & {[3]} \\ 2663 & 2673 & {[4]} \\ 2683 & 693 & {[5]} \\ \text { r/w } \end{array}$	Active if Control Type (Analog Input 3) is set to Cascade, PID Units (Setup Page) is set to SI and Proportional Band is not set to 0.*
Rate \mathbf{x} (A or B) Set the rate time.	0.00 to 9.99 minutes (0 to 999)	0.00 minutes	$\begin{array}{lcc} \text { 1A } & \text { 1B } & \text { Set } \\ 2604 & 2614 & {[1]} \\ 2624 & 6334 & {[2]} \\ 2644 & 2654 & {[3]} \\ 2664 & 2674 & {[4]} \\ 2684 & 694 & {[5]} \\ \text { r/w } & & \end{array}$	Active if Control Type (Analog Input 3) is set to Cascade, PID Units (Setup Page) is set to U.S. and Proportional Band is not set to 0.*
Dead Band x (A or B) Define the effective shift in the heating and cooling set points to prevent conflict.	0 to 30000 0.0 to 3000.0 0.00 to 300.00 0.000 to 30.000 (0 to 30000) in integer, tenths, hundredths or thousandths	0	$\begin{array}{llll} \text { 1A } & \text { 1B } & \text { Set } \\ 2605 & 2615 & {[1]} \\ 2625 & 2663 & {[2]} \\ 2645 & 2655 & {[3]} \\ 2665 & 2675 & {[4]} \\ 2685 & 2695 & {[5]} \\ \text { r/w } & & \end{array}$	Active if Control Type (Analog Input 3) is set to Cascade, Proportional Band is not set to 0 and one output is set to heat and the other to cool (Setup Page).*
Hysteresis x (A or B) Define the process variable change from the set point required to re-energize the output (in onoff mode).	0 to 30000 0.0 to 3000.0 0.00 to 300.00 0.000 to 30.000 (0 to 30000) in integer, tenths, hundredths or thousandths	3	 1A 1B Set 2607 2617 $[1]$ 2627 2637 $[2]$ 2647 2657 $[3]$ 2667 2677 $[4]$ 2687 2697 $[5]$ r/w	Active if Control Type (Analog Input 3) is set to Cascade, Proportional Band is set to 0 and one output is set to heat and the other to cool (Setup Page).*

Alarm Set Points

Main > Operations > Alarm Set Points

Alarm x (1 or 2) Low Set Point
Set low value at which alarm is triggered.

<per sensor $>$ to Alarm	<per sensor $>$	302	$[1]$
321	$[2]$		
x High Set Point		r / w	

Active if Alarm x Type (Setup Page) is set to Process.

Pper sensor>toAlarm	<per sensor $>$	303	$[1]$
322	$[2]$		
X L ow Set Point		r / w	

Active if Alarm x Type (Setup Page) is set to Process. Point
Set high value at which alarm is triggered.
\checkmark Note: Press the Information Key $\mathbf{\theta}$ for more task-related tips.

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Alarm x (1 or 2) Low Deviation Set the deviation below set point 1 that will trigger an alarm.	$\begin{aligned} & -19999 \text { to }-1 \\ & -1999.9 \text { to } 0.1 \\ & -199.99 \text { to } 0.01 \\ & -19.999 \text { to } 0.001 \\ & (-19999 \text { to }-1) \text { in inte- } \\ & \text { ger, tenths, hun- } \\ & \text { dredths or thou- } \\ & \text { sandths } \end{aligned}$	-999	$\begin{array}{ll} 302 & {[1]} \\ 321 & {[2]} \\ r / w & \end{array}$	Active if Alarm x Type (Setup Page) is set to Deviation.
Alarm x (1 or 2) High Deviation Set the deviation above set point 1 that will trigger an alarm.	$\begin{aligned} & 1 \text { to } 30000 \\ & 0.1 \text { to } 3000.0 \\ & 0.01 \text { to } 300.00 \\ & 0.001 \text { to } 30.000 \\ & \text { (1 to } 30000 \text {) in integer, } \\ & \text { tenths, hundredths or } \\ & \text { thousandths } \end{aligned}$	999	$\begin{array}{ll} 303 & {[1]} \\ 322 & {[2]} \\ r / w & \end{array}$	Active if Alarm x Type (Setup Page) is set to Deviation.
Alarm x (1 or 2) Maximum Low Rate Set the maximum rate process value per second at which alarm is triggered.	-19999 to Maximum Rate High -1 (-19999 to Maximum Rate High -1)	-100	$\begin{array}{ll} 302 & {[1]} \\ 321 & {[2]} \\ \mathrm{r} / \mathrm{w} & \end{array}$	Active if Alarm x Type (Setup Page) is set to Maximum Rate.
Alarm x (1 or 2) Maximum High Rate Set the maximum rate process value per second at which alarm is triggered. PID Crossover	```M aximum Rate Low +1 to 30000 (Maximum Rate Low +1 to 30000)```	100	$\begin{array}{ll} 303 & {[1]} \\ 322 & {[2]} \\ \mathrm{r} / \mathrm{w} \end{array}$	Active if Alarm x Type (Setup Page) is set to Maximum Rate.
Main > Operations > PID Crossover				
PID Crossover Select what will trigger the crossover to another PID set.	Off (0) Process (1) Set Point (2)	Off	$\begin{aligned} & 1951 \\ & \text { r/w } \end{aligned}$	Active: Always.
PID Cross Select the value that will trigger a change in PID for sets 1 to 2, 2 to 3, 3 to 4 and 4 to 5 .	$\begin{aligned} & -19999 \text { to } 30000 \\ & -1999.9 \text { to } 3000.0 \\ & -199.99 \text { to } 300.00 \\ & -19.999 \text { to } 30.000 \\ & (-19999 \text { to } 30000) \text { in in- } \\ & \text { teger, tenths, hun- } \\ & \text { dredths or thou- } \\ & \text { sandths } \end{aligned}$	Range low	$\begin{aligned} & 1961[1-2] \\ & 1962[2-3] \\ & 1963[3-4] \\ & 1964[4-5] \\ & r / w \end{aligned}$	Appears if PID Crossover is not set to Off. Based on decimal setting.
Ram	p to Set Point			
Main > Operations > Ramp to Set Point				
Ramp to Set Point Mode Select whether the maximum rate of temperature or process value change will be limited.	Off (0) Startup (1) Startup or Change (2)	Off	1100 r/w	Active if control type is not Ratio, Differential or Remote.

\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Ramp to Set Point Scale Select the units of measure for ramping.	Degrees/Minute (0) Degrees/Hour (1)	Degrees/ Minute	1102 r/w	Active if Ramp to Set Point Mode is not set to Off.
Ramp to Set Point Rate Select the maximum rate of temperature or process value change.	$\begin{aligned} & 1 \text { to } 999 \\ & 1 \text { to } 99.9 \\ & 1 \text { to } 9.99 \\ & 1 \text { to } 0.999 \\ & \text { (1 to } 999 \text {) in integer, } \\ & \text { tenths, hundredths or } \\ & \text { thousandths } \\ & \text { trol Set Points } \end{aligned}$	100.0	1101 r/w	Active if Ramp to Set Point Mode is not set to Off.
Main > Operations > Control Set Points				
Boost Power (1B) Select the minimum output 1A power that will activate output 1B (with 1.0\% hysteresis).	$\begin{aligned} & 0.0 \% \text { to } 100.0 \% \\ & (0 \text { to 1000) } \end{aligned}$	75\%	883 r/w	Active if Boost Type (Setup Page >Control Output 1B) is set to Boost On Power.
Boost Delay Time (1B) Set the time that the power level has to be exceeded before activating output 1B.	0 to 999 seconds (0 to 999)	0	884 r/w	Active if Boost Type (Setup Page $>$ Control Output 1B) is set to Boost On Power.
Boost Set Point (1B) Set the set point that will control output 1B.	$\begin{aligned} & -19999 \text { to } 30000 \\ & -1999.9 \text { to } 3000.0 \\ & -199.99 \text { to } 300.00 \\ & -19.999 \text { to } 30.000 \\ & \text { Set Point Low Limit to } \\ & \text { Set Point High Limit } \\ & \text { [process] } \\ & \text { (-19999 to 30000) in in- } \\ & \text { teger, tenths, hun- } \\ & \text { dredths or thou- } \\ & \text { sandths } \end{aligned}$	cool/cool Set Point High Limit (process) 999 (dev.) heat/heat Set Point Low Limit (process) -999 (dev.)	309 r/w	Active if Boost Type (Setup Page $>$ Control Output 1B) is set to Boost On Set Point. Based on decimal setting.
Digital Set Point x (1 to 4) Select the set point value that will be activated by digital input x. The set point name can be changed in the Setup Page.	Set Point Low Limit to Set Point High Limit		308 $[1]$ 327 $[2]$ 346 $[3]$ 365 $[4]$ r / w	Active if any digital input is set to Digital Set Point.

\checkmark Note: Press the Information Key $\mathbf{\theta}$ for more task-related tips.

Parameter Description	Range (Modbus Value)	Default
Digital Differential Set Point x (1 to 4) Select the differential value that will be activated by digital input x. The value will be added to the input 3 process value while digital input X is active. The set point name can be changed in the Setup Page.	$\begin{aligned} & -19999 \text { to } 30000 \\ & -1999.9 \text { t t } 3000.0 \\ & -199.99 \text { to } 300.00 \\ & -19.999 \text { to } 30.000 \\ & (-19999 \text { to } 30000) \text { in } \\ & \text { integer, tenths, hun- } \\ & \text { dredths or thou- } \\ & \text { sandths } \end{aligned}$	0
Digital Ratio Set Point x (1 to 4) Select the ratio value that will be activated by digital input x. The input 3 process value will be multiplied by this value while digital input x is active. The set point name can be changed in the Setup Page.	$\begin{gathered} 0 \% \text { to } 30000 \% \\ \text { (0 to 30000) } \end{gathered}$	100\%

Modbus
Register read/write (I/O, Set)

314 [1
333 [2]
352 [3]
371 [4]
r/w

Conditions for Parameters to Appear

Active if any digital input is set to Digital Differential Value. Based on decimal setting.

Active if any digital input is set to Digital Ratio Value.

Remote/Local Set Points

Main > Operations > Remote/Local Set Points

Remote/Local Set Point	Local Set Point (0)	Local Set	316	r / w
Switch between the re- mote and local set	Remote 2 (1) Remote 3 (2)	Point		Available if Control Type (Setup Page $>$ Analog Input 2) is set to Remote.

\checkmark Note: For more information about how parameter settings affect the controller's operation, see the F eatures Chapter.

Operations Page Parameter Record

Make a photocopy of this page and enter your settings on that copy.

Name \qquad

Date \qquad

Autotune PID					
Autotune PID Type					
Autotune PID Cascade					
Cascade Inner Loop					
Cascade Outer Loop					
PID Set Channel 1 (Optional Inner Loop)	PID Set 1	PID Set 2	PID Set 3	PID Set 4	PID Set 5
Proportional Band A					
IntegralA / ResetA					
DerivativeA / RateA					
Dead Band A					
Hysteresis A					
Proportional Band B					
IntegralB / ResetB					
DerivativeB / RateB					
Dead Band B					
Hysteresis B					
Cascade PID Set (Outer Loop)	PID Set 1	PID Set 2	PID Set 3	PID Set 4	PID Set 5
Proportional Band A					
IntegralA / ResetA					
DerivativeA / RateA					
Dead Band A					
Hysteresis A					
Proportional Band B					
IntegralB / ResetB					
DerivativeB / RateB					
Dead Band B					
Hysteresis B					
Alarm Set Point Menu	Alarm 1	Alarm 2			
Low Set Point					
High Set Point					
Low Deviation					
High Deviation					
Rate					
PID Crossover	PID 1 to 2	PID 2 to 3	PID 3 to 4	PID 4 to 5	
PID Cross					
Ramp x to Set Point					
Ramp to Set Point Mode					
Ramp to Set Point Rate					
Ramp to Set Point Scale					
Control Set Points					
Boost Power					
Boost Delay Time					
Remote/Local Set Point					
Boost Set Point					
	Dig. SP 1	Dig. SP 2	Dig. SP 3	Dig. SP 4	
Digital Set Point x (1 to 4)					
Digital Differential Set Point x $(1 \text { to } 4)$					
Digital Ratio Set Point x (1 to 4)					

Setup Page Parameters

Parameter Description	$\begin{gathered} \text { Range } \\ \text { (Modbus Value) } \end{gathered}$	Default	Modbus Register read/write (I/O, Set)	Conditions for Parameters to Appear
System				
Main > Setup > System				
PID Units Choose units for PID control.	US (US will be in Reset/Rate) (0) SI (SI will be in Integral/Derivative) (1)	US (0)	900 r/w	Active: Always.
${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ Choose temperature scale.	$\begin{aligned} & { }^{\circ} \mathrm{F}(0) \\ & { }^{\circ} \mathrm{C}(1) \end{aligned}$	${ }^{\circ} \mathrm{F}(0)$	901 r/w	Active: Always.
Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$ Choose whether to display or hide ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ in top display.	No, Upper Display (0) Yes, Upper Display (1)	Yes, Upper Display (1)	$1923 \mathrm{r} / \mathrm{w}$	Active if input type is either RTD or thermocouple.
Maximum Transfer Heat The maximum heat output power when control is switched from auto to manual mode.	0.0\% to 100.0\% (0 to 1000) in tenths	$\begin{gathered} 100.0 \% \\ (1000) \end{gathered}$	$452 \mathrm{r} / \mathrm{w}$	Active if one or both control outputs is set to heat [reverse].
Maximum Transfer Cool The maximum cool output power when control is switched from auto to manual mode.	$\begin{aligned} & -100.0 \% \text { to } 0.0 \% \\ & (-1000 \text { to } 0) \text { in tenths } \end{aligned}$	$\begin{gathered} -100.0 \% \\ (-1000) \end{gathered}$	$453 \mathrm{r} / \mathrm{w}$	Active if one or both control outputs is set to cool [direct].
Manual to Auto Transfer Select how the set point will be determined when control switches from manual to auto mode.	Restore Set Point (0) Reverse Bumpless (1)	Restore Set Point (0)	$454 \mathrm{r} / \mathrm{w}$	Active: Always.
Autotune Set Point Set percent of set point to auto-tune to.	$\begin{aligned} & 50 \text { to } 150 \% \\ & \text { (50 to 150) } \end{aligned}$	90\% (90)	304 r/w	Active: Always.
Failure Mode Select how the outputs will behave if an input error switches the controller to manual mode.	Bumpless Transfer (0) Fixed (1)	Bumpless (0)	880 r/w	Active: Always.

\checkmark Note: For more information about how parameter settings affect the control ler's operation, see the F eatures Chapter.

Modbus
Register
read/write Conditions for
Default
0.0\% (0)
0.0% to High Power Limit [heat only or cool only]
Cool High Power Limit
to Heat High Power Limit [heat/cool or cool/heat] in tenths

| Open Loop Detect
 Select whether to turn
 off outputs and display
 an error message. | Off (0)
 On (1) | | Off (0) | 904 | r / w |
| :---: | :--- | :--- | :--- | :--- | :--- | Active: Always. | |
| :--- |

Analog Input x (1 to 3)

Sensor
Select the sensor.

Type
Select the linearization
table to apply to the sen-
sor.

Analog Input 2

Main > Setup > Analog Input 2 Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- _ AB _ _ _).

Control Type Select the control type.	Normal (0) Remote (3) Alternate (4)	Normal	$1140 \mathrm{r} / \mathrm{w}$	Appears if the controller is the enhanced version (F4P_-AB- \qquad), Analog Input $2 \overline{\text { is }}$ selected and Analog Input 3 is set to Normal Control.

Analog Input x (1 to 3) continued

Units Name the units of measure for the input.	Temperature (0) Units (1) [3 characters]	Temperature (0)	Input 608 [1] 3070 char 1 3071 char 2 3072 char 3 618 [2] 3073 char 1 3074 char 2 3075 char 3 628 [3] 3076 char 1 3077 char 2 3078 char 3 r/w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ AB - ____). Active if Sensor is set to Process.
Decimal Set the decimal point for input.	$\begin{aligned} & 0(0) \\ & 0.0 \text { (1) } \\ & 0.00 \text { [process] (2) } \\ & 0.000 \text { [process] (3) } \end{aligned}$	0	Input 606 $[1]$ 616 $[2]$ 626 $[3]$ r/w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ $A B$ - ____). Active: Always.
Scale Low Set unit value for Iow end of current or voltage range.	Depends on sensor and decimal point selection. (max. range -19999 to 30000, process)	-	Input 680 [1] 682 $[2]$ 684 $[3]$ r/w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- _ $A B$ - _ _ _ _ $^{\text {) }}$. Active if Sensor is set to Process.
Scale High Set unit value for high end of current or voltage range.	Depends on sensor and decimal point selection. (max. range -19999 to 30000, process)	-	Input 681 $[1]$ 683 $[2]$ 685 $[3]$ r / w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- __ AB _). Active if Sensor is set to Process.
Scaling Set the process input scaling relationship.	Normal Scaling (0) Scale I nversion (1)	0	 Input 693 [1] 694 $[2]$ 695 $[3]$ r/w	Inputs 2 and 3 appear only if the controller is the enhanced ver- Active if Sensor is set to Process.
Set Point Low Limit * Set limit for minimum set point.	Depends on sensor and decimal point selection. (max. range process 19999 to 30000)	-	Input 602 $[1]$ 612 $[2]$ 622 $[3]$ r / w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- __AB - \qquad _). Active: Always.
Set Point High Limit * Set limit for maximum set point.	Depends on sensor and decimal point selection. (max. range process 19999 to 30000)	-	Input 603 $[1]$ 613 $[2]$ 623 $[3]$ r / w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ _ _ AB - \qquad _). Active: Always.

\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.
*N ot functional if analog input 3 setup for cascade.
**Scale Low value must be less than Scale High value for Normal or Inverse Scaling.

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Offset Type Select whether to use one or 10 input offset points.	Single Linear (0) Multiple Point (1)	Single Linear (0)	Input 5572 $[1]$ 5573 $[2]$ 5574 $[3]$ r/w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- _ $A B$ - _ _ $^{\prime}$ _).
Calibration Offset Value Select the input offset value.	Set Point Low Limit to Set Point High Limit (max. range process 19999 to 30000)	-	Input 605 $[1]$ 615 $[2]$ 625 $[3]$ r / w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P \qquad AB - \qquad _). Active if Offset Type is set to Single Linear.
Clear Input x (1 to 3) Offsets Reset offset values to 0 .	$\begin{aligned} & \text { No (0) } \\ & \text { Yes (1) } \end{aligned}$	No (0)	Input 5566 $[1]$ 5567 $[2]$ 5568 $[3]$ r/w	Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ _ _ AB _). Active if Offsēt Type is set to Multiple Point.
Offset Point Input 1 (Set 1 to 10) Set the temperature or value that will trigger the offset.	-19999 or Input Offset ($x-1$) Value +1 to I nput Offset ($\mathrm{x}+1$) Value - 1 or 30000.	$\begin{aligned} & \text { SP Low + } \\ & \text { ((SP High- } \\ & \text { SP Low) * } \\ & (x-1) / 9) \end{aligned}$	5506 $[1]$ 5507 $[2]$ 5508 $[3]$ 5509 $[4]$ 5510 $[5]$ 5511 $[6]$ 5512 $[7]$ 5513 $[8]$ 5514 $[9]$ 5515 $[10]$ r / w	Active if offset type is multiple point.
Offset Point Input 2 (Set 1 to 10) Set the temperature or value that will trigger the offset.	-19999 or Input Offset ($x-1$) Value +1 to I nput Offset ($x+1$) Value-1 or 30000.	$\begin{aligned} & \text { SP Low + } \\ & \text { ((SP High- } \\ & \text { SP Low) } \\ & (x-1) / 9) \end{aligned}$	5516 $[1]$ 5517 $[2]$ 5518 $[3]$ 5519 $[4]$ 5520 $[5]$ 5521 $[6]$ 5522 $[7]$ 5523 $[8]$ 5524 $[9]$ 5525 $[10]$ r / w	Input 2 appears only if the controller is the enhanced version (F4P \qquad AB - \qquad). Active if offset type is multiple point.
Offset Point Input 3 (Set 1 to 10) Set the temperature or value that will trigger the offset.	-19999 or Input Offset ($x-1$) Value +1 to Input Offset ($x+1$) Value-1 or 30000.	$\begin{aligned} & \text { SP Low + } \\ & \text { ((SP High- } \\ & \text { SP Low) } \\ & (x-1) / 9) \end{aligned}$	5526 $[1]$ 5527 $[2]$ 5528 $[3]$ 5529 $[4]$ 5530 $[5]$ 5531 $[6]$ 5532 $[7]$ 5533 $[8]$ 5534 $[9]$ 5535 $[10]$ r / w	Input 3 appears only if the controller is the enhanced version (F4P \qquad AB - \qquad). Active if offset type is multiple point.
Offset Value Input 1 (Set 1 to 10) Set the size of the offset.	$\begin{aligned} & -1000 \text { to } 1000 \\ & (-1000 \text { to } 1000) \end{aligned}$	0 (0)	5536 $[1]$ 5537 $[2]$ 5538 $[3]$ 5539 $[4]$ 5540 $[5]$ 5541 $[6]$ 5542 $[7]$ 5543 $[8]$ 5544 $[9]$ 5545 $[10]$ r/w	Active if offset type is multiple point.

\checkmark Note: Press the Information Key $\mathbf{\theta}$ for more task-related tips.

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)
Offset Value Input 2 (Set 1 to 10) Set the size of the offset.	$\begin{aligned} & -1000 \text { to } 1000 \\ & (-1000 \text { to } 1000) \end{aligned}$	0 (0)	5546 $[1]$ 5547 $[2]$ 5548 $[3]$ 5549 $[4]$ 5550 $[5]$ 5551 $[6]$ 5552 $[7]$ 5553 $[8]$ 5554 $[9]$ 5555 $[10]$ r / w
Offset Value Input 3 (Set 1 to 10) Set the size of the offset.	$\begin{aligned} & -1000 \text { to } 1000 \\ & (-1000 \text { to } 1000) \end{aligned}$	0 (0)	5556 $[1]$ 5557 $[2]$ 5558 $[3]$ 5559 $[4]$ 5560 $[5]$ 5561 $[6]$ 5562 $[7]$ 5563 $[8]$ 5564 $[9]$ 5565 $[10]$ r / w
Filter Time Set the filter time for input in seconds.	$\begin{aligned} & -60.0 \text { to } 60.0 \\ & (-600 \text { to } 600) \text { in tenths } \end{aligned}$	0 (0) 1.0 if Decimal set to 0.0 and Sensor Type set to Thermocouple or RTD. (10)	Input 604 $[1]$ 614 $[2]$ 624 $[3]$ r / w
Error Latch Select whether error clear is automatic or manual.	$\begin{aligned} & \text { Self Clear (0) } \\ & \text { Latch (1) } \end{aligned}$	Self Clear (0)	Input 607 [1] 617 $[2]$ 627 $[3]$ r / w
Square Root Apply square-root extraction to input.	$\begin{aligned} & \text { Off (0) } \\ & \text { On (1) } \end{aligned}$	Off (0)	Input 5569 $[1]$ 5570 $[2]$ 5571 $[3]$ r/w

Conditions for Parameters to Appear

Input 2 appears only if the controller is the enhanced version (F4P - AB -). Active if offset type is multiple point.

Input 2 appears only if the controller is the enhanced version (F4P _ _ _ AB - ___). Active if offset type is multiple point.

Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _- _AB _). Active: Alw̄ays.

Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ AB _). Active: Always.
Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ _ AB). Active if Sēnsor is set to $\bar{\circ}$ Process.

Analog Input 3

Main > Setup > Analog Input 3

Auto/Manual Slidewire Cali- bration Select the slidewire cali- bration method.	Skip Calibration (0) Automatic (1) Manual (2)	Skip Calibra- tion (0)	1915 r/w
Slidewire Learn Closed Calibrate the slidewire to the closed valve.	Learn (1)		

Appears if the controller is the enhanced version (F4P _ -AB-___), Analog Input $\overline{3} \bar{i}$ is selected and Sensor is set to Slidewire.
Appears if the controller is the enhanced version (F4P_-
AB-____), Analog Input $\overline{3} \overline{\text { is }}$ selected, S̄ensor is set to Slidewire and Auto/M anual Calibration is set to Manual.
\checkmark Note: For more information about how parameter settings affect the controller's operation, see the F eatures Chapter.

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Slidewire Learn Open Calibrate the slidewire to the open valve.	Learn (1)	-	$\begin{aligned} & 1919 \\ & w \end{aligned}$	Appears if the controller is the enhanced version (F4P -AB- \qquad), Analog Input $\overline{3}$ is selected, Sensor is set to Slidewire and Auto/M anual Calibration is set to Manual.
Slidewire Deadband Select the slidewire deadband.	$\begin{aligned} & \text { 0.3\% to 100.0\% } \\ & \text { (3 to 1000) in tenths } \end{aligned}$	1\%	$\begin{gathered} 1916 \\ r / w \end{gathered}$	Appears if the controller is the enhanced version (F4P_-AB- \qquad), Analog Input 3 is selected and Sensor is set to Slidewire.
Slidewire Hysteresis Select the slidewire hysteresis.	0.0% to 100.0% (0 to 1000) in tenths	0.0\%	$\begin{aligned} & 1917 \\ & r / w \end{aligned}$	Appears if the controller is the enhanced version (F4P_-AB- \qquad), Analog Input $\overline{3} \overline{\text { is }}$ selected and Sensor is set to Slidewire.
Control Type Select the control type.	Normal (0) Ratio (1) Differential (2) Remote (3) Cascade (5)	Normal	$\begin{aligned} & 1141 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Appears if the controller is the enhanced version (F4P_-AB- \qquad) and Analog Inpūt 2 or 3 is selected.
Cascade Select the cascade control method.	Process Cascade (0) Deviation Cascade (1)	Process Cascade	1925 r/w	Appears if the controller is the enhanced version (F4P_ -AB- \qquad), Analog Input $\overline{3} \overline{\text { is }}$ selected and Cascade is selected as the control type.
Cascade Low Range, Process Select the cascade low range.	$\begin{aligned} & \text { sensor range> } \\ & \text { (max. range process } \\ & 19999 \text { to } 30000 \text {) } \end{aligned}$	$\begin{aligned} & \text { <sensor } \\ & \text { range low> } \end{aligned}$	1926 r/w	Appears if the controller is the enhanced version (F4P_-AB- \qquad) and Cascade is set to Process Cascade.
Cascade High Range, Process Select the cascade high range.	$\begin{aligned} & \text { sensor range> } \\ & \text { (max. range process } \\ & 19999 \text { to 30000) } \end{aligned}$	<sensor range high>	1927 r/w	Appears if the controller is the enhanced version (F4P -AB- \qquad) and Cascade is set to Process Cascade.
Cascade Low Deviation Range Select the cascade low deviation.	$\begin{aligned} & -19999 \text { to }-1 \\ & -1999.9 \text { to }-0.1 \\ & -199.99 \text { to }-0.01 \\ & -19.999 \text { to }-0.001 \\ & (-19999 \text { to } 1) \text { in inte- } \\ & \text { ger, tenths, hun- } \\ & \text { dredths, thousandths } \end{aligned}$	-19999	1926 r/w	Appears if the controller is the enhanced version (F4P_-AB- \qquad) and Cascade is set to Deviation Cascade. Based on decimal setting.
Cascade High Deviation Range Select the cascade high deviation.	$\begin{aligned} & 1 \text { to } 9999 \\ & 1 \text { to } 999.9 \\ & 1 \text { to } 99.99 \\ & 1 \text { to } 9.999 \\ & \text { (1 to9999) in integer, } \\ & \text { tenths, hundredths, } \\ & \text { thousandths } \end{aligned}$	9999	1927 r/w	Appears if the controller is the enhanced version (F4P_-AB- \qquad) and Cascade is set to Deviation Cascade. Based on decimal setting.

\checkmark Note: Press the Information Key $\mathbf{~}$ for more task-related tips.

Digital Input x (1 to 4)

Main > Setup > Digital Input \mathbf{x} ($\mathbf{1}$ to 4)

Function Select the digital input function. Level detect requires continuous contact switch. Edge detect requires mounting contact switch.	Off (0) Panel Lock (1) [level] Reset Alarm 1 (2) [edge] Reset Alarm 2 (3) [edge] Reset Both Alarms (4) [edge] Control Outputs Off (5) [level] Digital Set Point (6) [level] Digital Differential Value (7) [level] Digital Ratio Value (8) [level] Remote [set point analog input] 2 (9) [level] Remote [set point analog input] 3 (10) [level] Alternate Control (11) [level] Manual Control (12) [level] Reverse Outputs (13) [level] Activate Message (14) [edge] Auto/Manual Key Lock (15) [level] Switch PID Sets 1-5 (16) [level]	Off	 Input 1060 [1] 1062 [2] 1064 $[3]$ 1066 $[4]$ r/w 	Active: Always. Only the currently active features will appear in the list.
Name Name the digital set point, digital ratio value or digital differential value for easy reference.	<7 characters selected by user> Name Digital SP (0) Name Digital SP (1) Name Digital SP (2) Name Digital SP (3)	DGT SP1 DGT SP2 DGT SP3 DGT SP4	ASCII Digital Storage Input 3000-3006 [1] 3010-3016 [2] 3020-3026 [3] 3030-3036 [4] r/w	Active if Function is set to Digital Set Point.
Activate Message Select which static message to display.	Messagel Name (0) Message2_Name (1) Message3_Name (2) Message4_Name (3)	Message 1 Name	$\left.\quad \begin{array}{l}\text { Digital } \\ \text { Input } \\ 3050 \\ \text { [1] } \\ 3051 \\ 3052 \\ 302] \\ 3053 \\ \text { r/w } \\ \text { r/w }\end{array}\right]$	Active if Function is set to Activate Message. (See Main > Setup > Static M essage.)
Message Display Time Set the length of time that the message will display.	$\begin{aligned} & 0 \text { to } 999 \\ & \text { (0 to } 999 \text {) } \end{aligned}$	10 seconds	$\left.\quad \begin{array}{l}\text { Digital } \\ \text { Input } \\ 3060 \\ \text { [1] } \\ 3061 \\ 3062 \\ 306] \\ 3063 \\ \text { r/w }\end{array}\right]$	Active if Function is set to Activate M essage.

\checkmark Note: For more information about how parameter settings affect the controller's operation, see the F eatures Chapter.

Modbus Register read/write (I/O, Set)
 Default

Low (0)
High (1)
Select the condition to trigger digital input.

Control Output x (1A and 1B)
Main > Setup > Control Output x (1A and 1B)

Parameter Description	Range (Modbus Value)	Default	read/write (I/O, Set)	Conditions for Parameters to Appear
Condition* Select the condition to trigger digital input. Control	Low (0) High (1) Output x (1A and	Low	 Input 1061 $[1]$ 1063 $[2]$ 1065 $[3]$ 1067 $[4]$ r/w 	Active: Always.
Main > Setup > Control Output \times (1A and 1B)				
Function Select type of function for output.	Off (0) [1B only] Heat (1) [reverse] Cool (2) [direct]	Heat (1A) Off (1B)	$\begin{array}{ll} & \text { Output } \\ 700 & \text { [1A] } \\ 717 & {[1 \mathrm{~B}]} \\ \text { r/w } & \end{array}$	Active: Always.
Cycle Time Type Select the time base.	Variable Burst (0) Fixed Time (1)	Fixed Time	$\begin{array}{ll} & \text { Output } \\ 509 & {[1 A]} \\ 559 & {[1 B]} \\ \text { r/w } & \end{array}$	Active if output x is not a mechanical relay or process output.
Cycle Time Value Select the cycle time period.	0.1 to 60 seconds (1 to 600) in tenths	1 second	$\begin{aligned} & \text { Output } \\ & 506 \quad[1 \mathrm{~A}] \\ & 556[1 \mathrm{~B}] \end{aligned}$	Active if Cycle Time Type is set to Fixed Time.
Process Set process output type.	$\begin{aligned} & 4 \text { to } 20 \mathrm{~mA}(0) \\ & 0 \text { to } 20 \mathrm{~mA}(1) \\ & 0 \text { to } 5 \mathrm{~V}(2) \\ & 1 \text { to } 5 \mathrm{~V}(3) \\ & 0 \text { to } 10 \mathrm{~V}(4) \\ & 20 \text { to } 4 \mathrm{~mA}(5) \text { [reverse } \\ & \text { value] } \end{aligned}$	4 to 20 mA	$\begin{array}{lc} & \text { Output } \\ 701 & \text { [1A] } \\ 718 & {[1 \mathrm{~B}]} \\ \text { r/w } & \end{array}$	Active if the controller is equipped with a process output.
Duplex (1A) Control both heat and cool from one output.	Off (0) On (1)	Off	$844 \mathrm{r} / \mathrm{w}$	Active if output 1A is a process output.
High Power Limit Set high limit control (PID mode only) output power level.	Low Limit +1 to 100\% ()	100\%		Active: Always.
Low Power Limit Set low limit control (PID mode only) output power level.	```0% to High Limit -1 ()```	0\%	Output 715 $[1 \mathrm{~A}]$ 732 $[1 B]$ r/w	Active: Always.
Boost Type (1B) Select what will activate control output 1B.	Boost on Power (0) Boost on Set Point (1)	Power	885 r/w	Active if the control output functions are both set to heat or cool.
Boost Power Mode (1B) Select whether boost power operates in Manual Mode.	Auto Only (0) Auto/Manual (1)	Boost Auto	881 r/w	Active if Boost Type is set to Power.
Boost Set Point Type (1B) Select which type of set point will control output $1 B$.	Process (0) Deviation (1)	Process	882 r/w	Active if Boost Type is set to Set Point.

Function
Select type of function for output.
Cycle Time Type
Select the time base.

Cycle Time Value
Select the cycle time period.

Process
Set process output type.

Off (0) [1B only]
Heat (1) [reverse]
Cool (2) [direct]

$\begin{array}{l}\text { Variable Burst (0) } \\ \text { Fixed Time (1) }\end{array}$	Fixed Time

Fixed Time (1)
0.1 to 60 seconds
(1 to 600) in tenths

4 to $20 \mathrm{~mA}(0) \quad 4$ to 20 mA
0 to 20 mA (1)
0 to 5 V (2)
1 to 5 V (3)
0 to 10 V (4)
20 to 4 mA (5) [reverse value]
Duplex (1A)
Control both heat and cool from one output.

High Power Limit
Set high limit control (PID mode only) output power level.

Low Power Limit
Set low limit control (PID mode only) output power level.

[^1]\checkmark Note: Press the Information Key $\mathbf{\theta}$ for more task-related tips.

Conditions for Parameters to Appear

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Alarm Output x (1 and 2)				
Main > Setup > Alarm Output x (1 and 2)				
Name Name the alarm for easy reference.	<10 characters selected by user>	ALARMX	$\begin{aligned} & 3200-3209[1] \\ & 3210-3219[2] \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Active: Always.
Alarm Type Select the alarm type.	Off (0) Process (1) Deviation (2) Maximum Rate (3)	Off (0)	Output 702 $[1]$ 719 $[2]$ r/w	Active: Always.
Alarm Source Select the alarm source.	Input 1 (0) Input 2 (1) Input 3 (2)	I nput 1 (0)	Output 716 $[1]$ 733 $[2]$ r/w	Active if the source is enabled. Inputs 2 and 3 appear only if the controller is the enhanced version ($\mathrm{F} 4 \mathrm{P}_{\text {_ }}{ }_{-} \mathrm{AB}$ - _ _ _ _)
Latching Choose automatic or manual clearing of alarms.	Alarm Self-Clears (0) Alarm Latches (1)	Alarm SelfClears (0)	Output 704 $[1]$ 721 $[2]$ r/w	Active if Alarm Output is enabled.
Silencing Choose whether to mask alarms on power-up.	No (0) Yes (1)	No (0)	Output 705 $[1]$ 722 $[2]$ r/w	Active if Alarm Output is enabled.
Alarm Hysteresis Set the alarm hysteresis.	1 to 30000 0.1 to 30000 0.01 to 30000 0.001 to 30000 (1 to 30000) in integer, tenths, hundredths, thousandths	3	Output 703 $[1]$ 720 $[2]$ r/w	Active if Alarm Output is enabled. Based on decimal setting.
Alarm Sides Choose to enable Low, High or both alarm set points.	Both (0) Low (1) High (2)	B oth (0)	Output 706 $[1]$ 723 $[2]$ r/w	Active if Alarm Output is enabled.
Alarm Logic Select the alarm logic option.	Open on Alarm (0) Close on Alarm (1)	Open on Alarm (0)	Output 707 $[1]$ 724 $[2]$ r/w	Active if Alarm Output is enabled.
Alarm Messages Select the alarm message option.	$\begin{aligned} & \text { Yes on Main Page (0) } \\ & \text { No(1) } \end{aligned}$	Yes on Main Page (0)	Output 708 $[1]$ 725 $[2]$ r/w	Active if Alarm Output is enabled.

\checkmark Note: F or more information about how parameter settings affect the controller's operation, see the Features Chapter.

Conditions for Parameters to Appear

Retransmit Output x (1 and 2)

Main > Setup > Retransmit Output x (1 and 2)

Retransmit Source * Choose a source for retransmit signal.	Off (0) Input 1 (1) Input 2 * (2) Input 3 * (3) Set Point 1 (4) Channel 1 Power (5)	Input 1 (1)	Output 709 $[1]$ 726 $[2]$ r/w	Active: Always. (Values appear only if the source is enabled.)
Analog Range Select voltage or current range to retransmit.	4 to 20 mA (0) 0 to 20 mA (1) 0 to 5 V (2) 1 to 5 V (3) 0 to 10 V (4)	4 to 20mA (0)	Output 836 $[1]$ 837 $[2]$ r / w	Active if Retransmit source is not set to Off.
Low Scale Set low end of current or voltage range to retransmit.	-19999 to 30000 (minimum sensor range)	Low end of sensor range	Output 710 $[1]$ 727 $[2]$ r/w	Active if Retransmit source is not set to Off. Based on decimal setting and source setting.
High Scale Set high end of current or voltage range to retransmit.	-19999 to 30000 (maximum sensor range)	High end of sensor range	Output 711 $[1]$ 728 $[2]$ r/w	Active if Retransmit source is not set to Off. Based on decimal setting and source setting.
Scale Offset Shift the scale up (+) or down (-) to agree with source signal.	```-9999 to 9999 Range Low to Range High (-19999 to 30000)```	0	Output 712 $[1]$ 729 $[2]$ r / w	Active if Retransmit source is not set to Off. Based on decimal setting and source setting.

Communications				
Main > Setup > Communications	$19200(0)$	Not available	Active: Always.	
Baud Rate Select transmission speed.	$19200(0)$ $9600(1)$	1	Not available	Active: Always.
Address Select address for con- troller.	1 to 247			

\checkmark Note: Press the Information Key $\mathbf{\theta}$ for more task-related tips.

[^2]
Conditions for Parameters to Appear

Custom Main Page

Main > Setup > Custom Main Page
Parameter \mathbf{x} (1 to 16)
Choose parameters to
appear on the Main
Page.

None (0)
Input 1 [value] (1)
Input 1 Value bar [graph] (2)
Input 2 [value] (3)
Input 2 Value bar [graph] (4)
Input 3 [value] (5)
Input 3 Value bar [graph] (6)
*Dgt. [digital] Diff. [differential] Value (8)
*CTL SP [Differential Set Point] (9)
*Set Differential (10)
**Dgt. [digital] Ratio Value (11)
**CTL SP [Ratio Set Point] (12)
**Set Ratio (13)
Digital Set Point (7)
Remote Set Point 2 (14)
Remote Set Point 3 (15)
Target Set point (16)
[cascade] Inner Set Point (17)
Set Point 1 (18)
Set Point 1 bar [graph] (19)
\% Power 1A (20)
\% Power 1B (21)
\% Power 1A bar [graph] (22)
\% Power 1B bar [graph] (23)

Tune Status 1 (24)
***Digital Inputs (25)
Active Ch1 PID Set (26)

Defaults depend on the control type selected.]	

Appears: Always.
Analog Inputs 2 and 3 appear only if the controller is the enhanced version (F4P_ _ _ AB---__).
The range of selections for the Custom Main Page will depend on other parameter settings.

* Appears if Input 3 is set to Differential.
** Appears if Input 3 is set to Ratio.
*** When a digital input is active, its number will appear in the Main Page display; when it is inactive, its position will be underlined.
\checkmark Note: F or more information about how parameter settings affect the controller's operation, see the Features Chapter.

Parameter	Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Process Display					
Main > Setup > Process Display					
Process Display Select how the upper display will function.		Input 1 (0) Alternating (1)	Input 1 (0)	1910 r/w	Appears only if the controller is the enhanced version (F4P_-_AB). \qquad
Display Time Select the time, in seconds, that each input will appear in the upper display.		$\begin{aligned} & 0 \text { to } 999 \text { seconds } \\ & \text { (0 to 999) } \end{aligned}$	2 seconds	Input 1911 $[1]$ 1912 $[2]$ 1913 $[3]$ r / w 	Appears only if the controller is the enhanced version (F4P_-_AB- \qquad) and Process Display is set to Alternating.
LED Intensity Set the brightness level of the upper display.		0 to 15 can be set (0 to 15) essage	8	1914 r/w	Appears only if the controller is the enhanced version (F4P_-_AB- \qquad) and Process Dis$\overline{\text { play }}$ is set to Alternating.
Main > Setup > Static Message					
Message x (1 to 4) Enter or change messages that can be displayed by activating a digital input.		4 lines of 17 characters each The first line serves as the message name.	Message x Name Message x Line 1 Message x Line 2 Message x Line 3	ASCII Storage mess. 4501-4517 [1] 4521-4537 [1] 4541-4557 [1] 4561-4577 [1] 4581-4597 [2] 4601-4617 [2] 4621-4637 [2] 4641-4657 [2] 4661-4677 [3] 4681-4697 [3] 4701-4717 [3] 4721-4737 [3] 4741-4757 [4] 4761-4777 [4] 4781-4797 [4] 4801-4817 [4] r/w	Active: Always.

Setup Page Parameter Record

Make a photocopy of this page and enter your settings on that copy.
Name \qquad Date \qquad

System	Setting									
PID Units										
${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$										
Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$										
Maximum Transfer Heat										
Maximum Transfer Cool										
Manual to Auto Transfer										
Autotune Set Point										
Failure Mode										
Input 1 Fail										
Open Loop Detect										
Analog Input	In 1	In 2	In 3							
Sensor										
Type										
Control Type										
Units Name										
Decimal										
Scale Low										
Scale High										
Scaling										
Set Point Low Limit										
Set Point High Limit										
Offset Type										
Input Offsets	In Off 1	In Off 2	In Off 3	In Off 4	In Off 5	In Off 6	In Off 7	In Off 8	In Off 9	In Off 10
Clear Input Offsets										
Offset Point										
Calibration Offset Value										
Filter Time										
Error Latch										
Square Root										
Auto/Manual Slidewire Cali.										
Slidewire Deadband										
Slidewire Hysteresis										
Control Type										
Cascade										
Cascade Low Range										
Cascade High Range										
Cascade Low Deviation										
Cascade High Deviation										
Digital Input	Digital $\ln 1$	Digital In 2	Digital $\ln 3$	Digital $\ln 4$						
Function										
Name										
Activate Message										
Message Display Time										
Condition										

Custom Main Page Parameter Record

Make a photocopy of this page and enter your settings on that copy.
Name \qquad Date \qquad

Will always appear if active:	Main Page Input 1 Error Input 2 Error Input 3 Error	
Will appear if active and set up to appear:	Alarm 1 Condition Alarm 2 Condition Autotuning (Position on Main Page)	(Possible parameters)
Choose from the column at the far right the information you want to appear on the Main Page (in any order):	P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16	None Input 1 [value] Input 1 Value bar [graph] Input 2 [value] Input 2 Value bar [graph] Input 3 [value] Input 3 Value bar [graph] Dgt [digital] Ratio Value * Ratio Set Point * Set Ratio * Dgt [digital] Diff. [differen- tial] Value ** Diff [differential] Set Point** Set Differential ** Digital Set Point Remote Set Point 2 Remote Set Point 3 Target Set point [cascade] Inner Set Point Set Point 1 Set Point 1 bar [graph] \% Power 1A \% Power 1B \% Power 1A bar [graph] \% Power 1B bar [graph] Tune Status 1 Digital Inputs Active Ch1 PID Set * appears if Input 3 is set to Ratio ** appears if Input 3 is set to Differential
Will always appear:	Go to Operations Go to Setup Go to Factory	

Factory Page Parameters

Parameter Description Set Lo	Range (Modbus Value) kout	Default	Modbus Register read/write (I/O, Set)	Conditions for Parameters to Appear
Main > Factory > Set Lockout				
Set Point Set the set point access level.	Full Access (0) Read Only (1)	Full Access (0)	1300 r/w	Active: Always.
Operations, Autotune PID Set access to this menu.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1306 r/w	Active: Always.
Operations, Edit PID Set access to this menu.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1307 r/w	Active: Always.
Operations, Alarm Set Point Set access to this menu.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1308 r/w	Active: Always.
Setup Page Set access to this page.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1302r/w	Active: Always.
Factory Page Set access to this page.	Full Access (0) Read Only (1) Password (2)	Full Access (0)	1303 r/w	Active: Always.
Set/Change Password Reset or change password. Choose Yes to change the password.	4 characters	none	$\begin{array}{lll} 1330 & {[1]} \\ 1331 & {[2]} \\ 1332 & {[3]} \\ 1333 & {[4]} \\ / / w & \end{array}$	Active: Always.
Clear Locks Unlock set point and all pages and menus.	Yes (0)		1315 r/w	Active: Always.

Factory Page Parameter Table

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/O, Set)	Conditions for Parameters to Appear
Operations, PID Crossover Set access to PID Crossover.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1316 r/w	Active: Always.
Operations, Ramp Set Point Set access to the Ramp Set Point.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1317 r/w	Active: Always.
Operations, Control Set Point Set access to the Control Set Point.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	1318 r/w	Active if any Digital Input is set to Digital Set Point.
Operations, Remote/Local Set Point Set access to the Remote/Local Set Point.	Full Access (0) Read Only (1) Password (2) Hidden (3)	Full Access (0)	$1319 \mathrm{r} / \mathrm{w}$	Available if Control Type (Setup Page $>$ Analog Input 2 or 3) is set to Remote.
Diagnos				
Main > Factory > Diagnostic				
Model First Digits	$\begin{aligned} & \text { P4 } \\ & \text { (4P) ASCII } 5280 \text { Dec } \end{aligned}$	$\begin{aligned} & \text { P4 } \\ & \text { (4P) ASCII } \\ & 5280 \mathrm{Dec} \end{aligned}$	0 r	Active: Always.
Manufactured Date Identifies the manufacture date. (WWYY) Week:Year	$\begin{aligned} & 0100 \text { to } 5200 \\ & (0100 \text { to } 5200) \end{aligned}$		$5 r$	Active: Always.
Serial Number Identifies the individual controller.	000000 to 999999 (0 to 999999)		```1[1st part] 2[2nd part] r```	Active: Always.
Software Number Identifies the software ID number.	$\begin{aligned} & 00 \text { to } 99 \\ & \text { (0 to } 99) \end{aligned}$		3 r	Active: Always.
Software Revision Identifies the software revision.	$\begin{aligned} & 0.00 \text { to } 9.99 \\ & \text { (} 0 \text { to } 999 \text {) } \end{aligned}$		4 r	Active: Always.
Input 1 Displays the input 1 type.	Univ Single (7)		8 r	Active: Always.

\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Modbus

Register read/write
(I/O, Set) Parameters to Appear
ull Access
(0)

Full Access
(0)

Full Access $1318 \mathrm{r} / \mathrm{w}$

Full Access $1319 \mathrm{r} / \mathrm{w}$
(0)

0 r
Active: Always.

1 [1st part] Active: Always.
2 [2nd part]
r
$3 r \quad$ Active: Always.
$4 r \quad$ Active: Always.
$8 \mathrm{r} \quad$ Active: Always.

Default	Modbus Register read/write (I/O, Set)	Conditions for Parameters to Appear
	9 r	Active: Always.
	10 r	Active: Always.
	$\begin{array}{lc} & \text { Output } \\ 16 & {[1 \mathrm{~A}]} \\ 17 & {[1 \mathrm{~B}]} \\ \mathrm{r} & \end{array}$	Active: Always.
	 20 Retransmit 21 $[1]$ r $[2]$	Active: Always.
	Input 1504 $[1]$ 1505 $[2]$ 1506 $[3]$ r	Active: Always.
	Input 1501 $[1]$ 1532 [2] 1532 [3] r	Active: Always.
	Input 1500 [1] 1531 [2] 1531 [3] r	Active: Always.

Line Frequency	$x x$
Display the ac line fre-	(x)

Display the ac line fre- (xx) quency in hertz.

Test

Main > Factory > Test

Test Outputs
Choose output to test.

All Off (0)
Output 1A (1)
Output 1B (2)
Retransmit 1 (5)
Retransmit 2 (6)
Alarm 1 (7)
Alarm 2 (8)
All On (9)
Communications (10)

1515 r

1514 w

Active: Always.

Parameter Description	Range (Modbus Value)	Default	Register read/write (I/0, Set)	Conditions for Parameters to Appear
Display Test Checks LED display seg- ments by turning them on and off.	(1)		1513 w	Active: Always.
Full Defaults Causes all parameter values to revert to their factory default settings.	Yes (800)		1602 r	Active: Always.

Calibrate Input x (1 to 3)

Main Page > Factory > Calibration > Calibrate Input \mathbf{x} (1 to 3)

0.00 mV Thermocouple Store 0.000 mV calibration for input thermocouple.	Yes (1)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & 13] \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P \qquad AB). \qquad
50.00mV Thermocouple Store 50.000 mV calibration for input thermocouple.	Yes (2)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ AB - _ _ _).
32° F Type J Store 32° F type J calibration.	Yes (3)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F 4 P _ - _ $A B$ - _ _ _ _).
Ground Store calibration for ground at gains of 1 and 32.	Yes (4)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version ($F 4 P_{\text {_ }}$ _ _ $A B$ - _ _ _ _ $^{\text {) }}$.
Lead Store calibration for lead resistance.	Yes (5)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ $A B$ - ____).
15.0 Ohms* Store 15.00Ω calibration for input RTD.	Yes (6)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version ($F 4 P_{\text {_ }}$ _ $A B$ - _ _ _).
240.0 Ohms* Store 240.00Ω calibration for the 500Ω or $1 k \Omega$ RTD input.	Yes (6)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & w \end{aligned}$	$\begin{gathered} \text { Input } \\ {[1]} \\ {[2]} \\ {[3]} \end{gathered}$	Active: Always.
380.0 Ohms* Store 380.00Ω calibration for input RTD.	Yes (7)	$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \text { r/w } \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ _ AB - _ _ _ _).

\checkmark Note: F or more information about how parameter settings affect the controller 's operation, see the Features Chapter.
*The tenth digit of your model number, F4PX-XXXX-XXXX, determines what RTD calibration resistance values the unit uses. Refer to the Ordering Information in the Appendix.

Options 1-4, 100Ω RTD - 15.00 and 380.00Ω
Options 5-8, 500Ω or 1000Ω RTD -240.00 and 6080.00Ω

Factory Page Parameter Table			Modbus Register read/write (I/O, Set)		Conditions for Parameters to Appear
Parameter Description	Range (Modbus Value)	Default			
6080.0 Ohms* Store 6080.00Ω calibration for the 500Ω or $1 \mathrm{k} \Omega$ RTD input.	Yes (7)		1603 1608 1613 w	Input $[1]$ $[2]$ $[3]$	Active: Always.
0.000 V Store 0.000 V calibration for the process input.	Yes (8)		1603 1608 1613 r / w	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P \qquad $A B$). \qquad
10.000 V Store 10.000 V calibration for the process input.	Yes (9)		1603 1608 1613 r / w	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ _AB _). \qquad
4.000 mA Store 4 mA calibration for the process input.	Yes (10)		$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P \qquad AB). \qquad
20.000 mA Store 20 mA calibration for the process input.	Yes (11)		$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 2 and 3 appear only if the controller is the enhanced version (F4P _ - _ $A B$ - _ _ _ _ $^{\text {) }}$.
15.0 Ohms Store 15.00Ω calibration for the slidewire input.	Yes (12)		$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & \text { r/w } \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 3 appear only if the controller is the enhanced version (F 4 P _ $^{-}$_ $A B$ - _ _ _ $^{\text {) }}$).
1000 Ohms Store 1000.00Ω calibration for the slidewire input.	Yes (13)		$\begin{aligned} & 1603 \\ & 1608 \\ & 1613 \\ & r / w \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[2]} \\ & {[3]} \end{aligned}$	Active: Always. Inputs 3 appear only if the controller is the enhanced version (F 4 P _ - _ _ AB - _ _ _ _ $^{\text {) }}$.
	Calibrate Output x (1A or 1B) and Retransmit x (1 and 2)				
Main > Factory > Calibration > Calibrate Output x (1A or 1B) and Retransmit \times (1 and 2)					
4.000 mA Store 4 mA calibration for the process output.	0.000 mA to 6.000 mA (0 to 6000)	4.000 mA	1604 1609 1624 1629 r/w	Output [1A] [1B] Rexmit [1] [2]	Active: Always.
20.000 mA Store 20 mA calibration for the process output.	$\begin{aligned} & 0.000 \text { to } 24.000 \mathrm{~mA} \\ & (0 \text { to } 24000) \end{aligned}$	20.000 mA	1605 1610 1625 1630 r/w	Output [1A] [1B] Rexmit [1] [2]	Active: Always.

\checkmark Note: Press the Information Key $\mathbf{\theta}$ for more task-related tips.
*The tenth digit of your model number, $\mathrm{F} 4 \mathrm{PX}-\mathrm{XXXX}-\mathrm{X} \mathbf{X X X}$, determines what RTD calibration resistance values the unit uses. Refer to the Ordering Information in the Appendix.

Options 1-4, 100Ω RTD - 15.00 and 380.00Ω
Options 5-8, 500Ω or 1000Ω RTD - 240.00 and 6080.00Ω

Restore Input \mathbf{x} (1 to 3) Calibration

Main > Factory > Calibration > Restore Input x (1 to 3) Calibration

Restore Input x (1 to 3)	Input 1 (0)	-	1601	Active: Always.
Calibration	Input 2 (1)		write only	Inputs 2 and 3 appear only if the
Restores original factory calibration	Input 3 (2)			controller is the enhanced ver-

\checkmark Note: For more information about how parameter settings affect the controller's operation, see the Features Chapter.

Notes:

Chapter Seven: Features

Inputs
Multiple Input Offsets 7.2
Filter Time Constant 7 .3
Set Point Low Limit and High Limit 7.3
High Scale and Low Scale 7.4
Digital Inputs 7.4
Control Methods
Auto-Manual Control 7.5
On-Off Control 7 .6
Proportional Control 7.6
PI Control 7 .7
PID Control 7.7
Dead Band 7 .7
Multiple PID Sets 7 .8
Burst Fire 7 .8
Other Features
Autotuning 7.9
Retransmit 7 .9
Open Loop Detect 7.9
Alarms
Alarm Set Points 7.10
Alarm Hysteresis 7.10
Process, Deviation or Rate Alarms 7.10
Alarm Latching 7 .11
Alarm Silencing 7.11
Alarm Sides 7.11
Advanced Features
Boost Heat and Boost Cool 7.12
Duplex 7 .13
Digital Set Points 7.14
Features in Enhanced Series F4P Controller
Remote Set Point 7.15
Alternate Input 7 .15
Cascade Control 7 .16
Differential Control 7 .17
Ratio Control 7.17
Slidewire Control 7.18

Inputs

Multiple Input Offsets

Offset point are used to compensate for differences between the target process value and the sensor value read by the Series F4P. Multiple offset points enable the F4P to compensate for non-linear differences between the sensor readings and target process values over the thermal or process system operating range. Sensor reading differences can be caused by sensor placement, tolerances, an inaccurate sensor or lead resistance.
The Series F4P controller supports both single point and multiple point offsets. The choice for single or multiple offsets is made in the Setup Page >Analog Input Menu.
A single point offset allows the F4P to control the process to one offset value difference linearly either above or below the sensed value over the entire operating range.
Multiple point offsets allow the Series F4P to control the process to 10 different offset points over the operating range. E ach offset point has a programmable positive or negative offset value. Offset points can be positioned anywhere over the operating range. Offset point values are programmable between $-1,000$ and $+1,000$. Offset values are linearly interpol ated between the nearest two offset points. Offset values are added to the sensed value to establish a target process value. Offset Point 1 is programmable as the first point or low end point of the range. Offset points 2 through 10 follow sequentially. Offset values lower than the first point (point 1) or higher than the last point (point 10) are zero.
Location in software: Setup Page >Analog Input x (1 to 3) Menu > Input Offset x (1 to 10).

Figure 7.2 - Multiple Input Offsets.

Filter Time Constant

A time filter smoothes an input signal by applying a first-order filter time constant to the signal. Either the displayed value or both the displayed and control values can be filtered. Filtering the displayed value makes it easier to monitor. Filtering the signal may improve the performance of PID control in a noisy or very dynamic system.
A positive value affects only the viewed values. A negative value affects both the viewed and control values.
Location in software: Setup Page >Analog Input x (1 to $3)$.

Figure 7.3a - Filtered and Unfiltered Input Signals.

Set Point Low Limit and High Limit

The controller constrains the set point to a value between a low limit and a high limit. The high limit cannot be set higher than the sensor high limit or lower than the low limit. The low limit cannot be set lower than the sensor low limit or higher than the high limit.
Location in software: Setup Page $>$ Analog Input x (1 to $3)$.

Figure 7.3b - Sensor Ranges.

High Scale and Low Scale

When an analog input is selected as a process input, you must choose a value to represent the low and high ends of the current or voltage range. For example, if an analog input with a process sensor type 4 to 20 mA is selected, then 0 could represent 4 mA and 100 could represent 20 mA . The set point will be limited to the range between scale low and scale high.
Location in software: Setup Page >Analog Input and Setup Page $>$ Retransmit Output x (1 or 2).

Scaling

When an analog input is selected as a process input, you must choose the scaling relationship of the current or voltage input signal to the Low Scale and High Scale parameters.
For example, with Normal Scaling selected, Scale Low = 0 , and High Scale $=100$ for a 4 to 20 mA input, 0 repre sents 4 mA and 100 represents 20 mA . With Scale I nversion selected, the Scale Low value represents a 20 mA input signal and Scale High represents a 4 mA input signal.
The value entered for Scale Low must be less than the Scale High value with Normal Scaling or Inverse Scaling selected.
Location in software: Setup Page $>$ Analog Input and Setup Page > Scaling.

Digital Inputs

With a digital input an operator can perform certain operations on a system by opening or closing a switch or applying a dc logic signal to the controller. This feature can add convenience, safety or security to a system.
In the Series F4P, digital inputs 1 to 4 can be assigned to display messages, switch to another set point or perform other process control features.
A low or high state will trigger an event for as long as that state exists. A rising edge will turn on an event when it changes from a low to a high state. The event will continue until the rising edge (low to high state) occurs again.
Location in software: Setup Page > Digital Input x (1 to
4) Condition.

Control Methods

Auto (closed loop) and Manual (open loop) Control

Auto (closed loop) control uses a process sensor to determine the difference between the process value and the set point. Then the controller applies power to a control output load in order to reduce that difference.
Manual (open loop) control allows the user to directly set and adjust the power level to the control output load.
The Series F4P Auto/M anual Indicator Light is on when the controller is in manual mode. The controller can only switch between auto and manual mode from the Main Page. To toggle between manual and auto mode, first press the key, then confirm your selection in the lower display. The indicator light will flash after you press the * key until you confirm your choice or 10 seconds have elapsed.
In manual mode, the user manually adjusts the output power level. Changes take effect when the new value has been entered and the controller is back in the Main Page.
Before it switches from manual to auto mode the F4P checks to make certain a functioning sensor is connected to analog input 1.
The user can select how the Series F4 determines a set point when it makes a transition from manual to auto operation. It can automatically switch back to the last set point it used in auto mode or use reverse bumpless transfer, which will establish a set point that equals the process value at the time it was switched from manual mode.
Location in software: Setup Page > System.
The user can protect the process being controlled by selecting the maximum control output power levels that will be allowed when the controller switches from auto to manual power.
Location in software: Setup Page > System > Maximum Heat Transfer Power and Maximum Cool Transfer Power.

On-Off Control

On-off control switches the output either full on or full off, depending on the input, set point and hysteresis values. The hysteresis value indicates the amount the process value must deviate from the set point to turn on the output. Increasing the value decreases the number of times the output will cyde. Decreasing hysteresis improves controllability. With hysteresis set to 0 the process value would stay closer to the set point, but the output would switch on and off more frequently, causing "chattering." Set the proportional band to 0 to set the controller to onoff control mode.
Proportional Band x (A or B) location in software: Operations Page $>$ Edit PID >PID Set x (1 to 5).
Hysteresis x (A or B) location in software: Operations Page $>$ Edit PID >PID Set x (1 to 5).

NOTE:
Fail power does not function in on-off control mode.

Figure 7.6a — On-Off Control for Heating and Cooling.

Proportional Control

Some processes need to maintain a temperature or process value closer to the set point than on-off control can provide. Proportional control provides closer control by adjusting the output when the temperature or process value is within a proportional band. When the value is in the band, the controller adjusts the output based on how close the process value is to the set point; the closer to set point the lower the output. This is similar to backing off on the gas pedal of a car as you approach a stop sign. It keeps the temperature or process value from swinging as widely as it would with simple on-off control. However, when a system settles down, the temperature or process value tends to "droop" short of the set point.
With proportional control the output power level equals (set point minus process value) divided by propband.

Figure 7.6b - Proportional Control.

Proportional plus Integral (PI) Control

The droop caused by proportional control can be corrected by adding integral control. When the system settles down the integral value is tuned to bring the temperature or process value closer to the set point. Integral determines the speed of the correction, but this may increase the overshoot at startup or when the set point is changed. Too much integral action will make the system unstable. Integral is cleared when the process value is outside of the proportional band.
Integral (if units are set to SI) is measured in minutes per repeat. A low integral value causes a fast integrating action.
Reset (if units are set to U.S.) is measured in repeats per minute. A high reset value causes a fast integrating action.

Figure 7.7a - Proportional Plus Integral Control.

Location in software: Operations Page >Edit PID > PID Set x (1 to 5).

Proportional Integral Derivative (PID) Control

Use derivative control to minimize overshoot in a PI-controlled system. Derivative adjusts the output based on the rate of change in the temperature or process value. Too much derivative will make the system sluggish. Location in software: Operations Page >E dit PID >PID Set x (1 to 5).

Figure 7.7b - PID Control.

Dead Band

In a PID application the dead bands above and below the set point can save an application's energy and wear by maintaining process temperature within acceptable ranges. Shifting the effective cooling set point and heating set point keeps the two systems from fighting each other.
Proportional action ceases when the process value is within the dead band. Integral action continues to bring the process temperature to the set point. When the dead band value is zero, the heating element activates when the temperature drops below the set point, and the cooling element switches on when the temperature exceeds the set point.
Location in software: Operations Page >E dit PID >PID Set x (1 to 5).

Figure 7.7c - Cooling Dead Band.

Multiple PID Sets

The Series F4P supports up to five heat/cool PID sets. This feature is extremely valuable if the characteristics of your thermal system vary over its operating range. All PID sets can be auto tuned or manually tuned. PID sets can be edited in the Operations Page. The Series F4P can be programmed to operate using any of the five sets based on crossover points of the set point or process value. These programming choices are made in the Operations Page > PID Crossover.
When the process or set point value crosses the crossover point, the PID set designated for that region of the operating range is used to control the percent power being supplied to the load.
There is a -1° hysteresis for each crossover. A rising temperature will change PID sets at the crossover value. A falling temperature will change PID sets at the crossover value- 1°.
Location in software: Operations Page >Edit PID > PID Crossover x (1 to 4).

Burst Fire (variable-time base)

Burst firing provides even output power with the lowest level of noise generation (RFI). Burst fire is the preferred method for controlling a resistive load, providing a very short time base for longer heater life.
The controller determines when the ac sine wave will cross the 0 -volts point, then switches the load on or off only at this point, minimizing RFI.
Location in software: Setup Page > Control Output x (1A or 1B).

Figure 7.8a — Multiple PID Sets.

Figure 7.8b - Burst Fire.

Other Features

Autotuning

The autotuning feature allows the controller to measure the system response to determine effective settings for PID control. When autotuning is initiated the controller reverts to on-off control. The temperature must cross the auto-tune set point four times to complete the autotuning process. Once complete, the controller controls at the normal set point, using the new parameters. The F4P stores the value in the PID set specified.
Location in software: Operations Page >Autotune PID > PID Set x (1 to 5).

\triangle

CAUTION: Choose an auto-tune set point value that will protect your product from possible damage from overshoot or undershoot during the autotuning oscillations. If the product is sensitive, carefully select the auto-tune set point to prevent product damage.

Figure 7.9 - Autotuning.
\checkmark NOTE:
For manual tuning, se the Operations Chapter.

Retransmit

Retransmit outputs 1 and 2 can retransmit an analog signal to serve as an input variable for another device. The signal may serve as a remote set point for another controller or as input for a chart recorder to document system performance over time.

Location in software: Setup Page.

Open Loop Detect

Open loop checks the integrity of the control loop, consisting of the controller output, power control, heater and sensor.
If the output power is at its maximum for a period of time equal to the reset time and the input has not changed at least $\pm 5^{\circ} \mathrm{F}$, the controller will switch to Manual Mode at 0\% output power. The upper screen will display oPLP and the lower screen will display "Open Loop."
To clear an open loop error, after correcting the problem that caused it, turn the controller off then back on.

Location in software: Setup Page > System.

Alarms

Alarms are activated when the process value or temperature leaves a defined range. A user can configure how and when an alarm is triggered, what action it takes and whether it turns off automatically when the alarm condition is over.
Configure alarm outputs in the Setup Page before setting alarm set points.

Alarm Set Points

The alarm high set point defines the process value or temperature that will trigger a high side alarm. It must be higher than the alarm low set point and lower than the high limit of the sensor range.
The alarm low set point defines the temperature that will trigger a low side alarm. It must be lower than the alarm high set point and higher than the low limit of the sensor range.
Location in software: Operations Page $>$ Alarm Set Point $>$ Alarm \times (1 or 2).

Alarm Hysteresis

An alarm state is triggered when the process value reaches the alarm high or alarm low set point. Alarm hysteresis defines how far the process must return into the normal operating range before the alarm can be cleared.
Alarm hysteresis is a zone inside each alarm set point. This zone is defined by adding the hysteresis value to the alarm low set point or subtracting the hysteresis value from the alarm high set point.
Location in software: Setup Page >Alarm Output x (1 or 2).

Figure 7.10 - Alarm Settings.

Process, Deviation or Rate Alarms

A process alarm uses one or two absolute set points to define an alarm condition. A deviation alarm uses one or two set points that are defined relative to the control set point. High and low alarm set points are calculated by adding and/or subtracting offset values from the control set point. If the set point changes, the window defined by the alarm set points automatically changes with it.
A rate alarm is triggered by a change in temperature or process value that exceeds the sel ected rate.
Location in software: Setup Page >Alarm Output x (1 or $2)$.

Alarm Latching

A latched alarm will remain active after the alarm condition has passed. It can only be deactivated by the user. An alarm that is not latched (self-clearing) will deactivate automatically when the alarm condition has passed. Location in software: Setup Page >Alarm x (1 or 2).

Figure 7.11a - Alarm Latching.

Alarm Silencing

Alarm silencing has two uses:

1. It is often used to allow a system to warm up after it has been started up. With alarm silencing on, an alarm is not triggered when the process temperature is initially lower than the alarm low set point. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm function.
2. Alarm silencing also allows the operator to disable the alarm output while the controller is in an alarm state. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm output function.
If the Series F4P has an output that is functioning as a deviation alarm, the alarm is silenced when the set point is changed, until the process value re-enters the normal operating range.
Location in software: Setup Page >Alarm x (1 or 2).

Figure 7.11b — Alarm Silencing.

Alarm Sides

Alarms can be configured to trigger when the process exceeds the High Alarm Set Point, the Low Alarm Set Point or both.
Location in software: Setup Page >Alarm x (1 or 2). (Alarm set points are established in the Operations Page.)

Advanced Features

Boost Heat and Boost Cool

Boost operation is supported on output 1B. Boost is enabled when outputs 1A and 1B are configured to perform the same function: heat/heat or cool/cool.
The type of boost operation chosen in the output 1B menu can be either boost on power or boost on set point.
When boost on power is selected, output 1B is turned on or off based on the output load power requirements. Boost on power can be enabled for operation in the auto mode only or in both the auto and manual mode. If chosen, the power level at which output 1B will be turned on is set in the Operations Page >Control Set Points. A delay time can also be set. The delay time will delay the turn on of the boost output until the power level is exceeded for the time of the delay. There is a 5% power level hysteresis between boost on and boost off operation.
When boost on set point is selected, output 1B is turned on or off based on a programmable set point value or on a deviation from the set point value. Boost set points and boost deviation values are set in the Operations Page > Control Set Points.

Figure 7.12a - Boost Heat Based on Output Power.

Figure 7.12b - Boost Heat Based on a Fixed Set Point.

Duplex

Certain systems require that a single process output control both heating and cooling outputs. A Series F4P controller with a process output in output 1A (F4P _ - F _ A A - \qquad) can function as two separate outputs. With a 4 to 20 mA output the heating output, for instance, will operate from 12 to 20 mA (0 to $+100 \%$) and the cooling outputs will operate from 12 to 4 mA (0 to 100%). In some cases this type of output is required by the device that the Series F4P controls, such as a threeway valve that opens one way with a 12 to 20 mA signal and opens the other way with a 4 to 12 mA signal. This feature reduces the overall system cost by using a single output to act as two outputs.
Location in software: Setup Page >Control Output 1A > Function.

Figure 7.13 - Duplex Application Example.

Digital Set Points

Up to four nameable digital set points can be configured to control the Series F4P outputs. Each of the Series F4P's four digital inputs can be configured to select a different set point value.
When the digital set point function is selected in the Digital Input Menu, an adjustable digital set point value parameter (with the default name of "Dig. SPX") will be displayed in the Operation Menu >Control Set Points. When the selected digital input goes to its true condition (which is determined on the Setup Page) the Series F4P will control to the enabled digital set point value. The enabled digital set point value and name will replace the local set point displayed on the Main Page. This set point is not adjustable from the Main Page.

Only one digital set point can be enabled at a time. If more than one digital input is configured as a digital set point, priority will be based on the order scanned by the Series F 4P.
The enabled digital set point remains enabled for as long as the digital input is in its true condition. When no digital set points are enabled, control in the closed-loop mode will revert to the local set point value.
Location in software: Setup Page > Digital Set Point x (1 to 4).
(Digital set points are set or changed in the Operating Page.)

Figure 7.14 - Digital Set Points System Example.

Features in the Enhanced Series F4P Controller

Remote Set Point

The Series F4P with the enhanced control option can be configured to support up to two remote set points. This feature allows the closed-loop, process set point to be changed remotely.
In remote set point operation the measured process value of the remote set point input is used as the control set point in closed-loop operation. Analog inputs 2 and 3 can be configured as remote set point inputs. Remote set point (Remote 2 and Remote 3) values are limited in range to the operating range of the sensor selected for analog input 1, unless the operating range of the remote set point input sensor is less than the operating range of input 1. If that is the case, the remote set point sensor operating range will be used.
The switch to a remote set point input as the control set point can be made with a digital input or by selection in
the Operations Menu. Remote set point operation is masked if it is not enabled in the analog input 2 and 3 menus. Remote set point operation has priority over local set point operation when selected by one of the four digital inputs.
Location in software: Setup Page $>$ Analog Input x (2 or 3) and Setup Page $>$ Digital Input \times (1 to 4).

Alternate Control

The Series F4P with the enhanced control option can be configured to have analog input 1 or analog input 2 function as the sensor input for closed-loop control. This feature can be used to support the need for redundant sensor operation or where sensor location or sensor type changes can improve process control.
The transition between inputs is made through the operation of the designated digital input. To ensure proper control operation the sensor used for analog inputs 1 and 2 must be the same. The linearization type can be different. Example, a K thermocouple can be used on input 1 and a J thermocouple can be used on input 2. The decimal value and unit type follows the input 1 selection. The Series F4P firmware considers the sensor not being used to be off. Out-of-operating-range transitions will cause the Series F4 to switch to the manual mode. Transitions from outside the set point operating range will
cause the control set point to go to either the low or high set point limit, which ever is closer.
The alternate input option is only available in normal control operation. The remote set point and digital set point features are not available when alternate input operation is enabled.
Location in software: Setup Page $>$ Analog Input 2 and Setup Page > Digital Input x (1 to 4)

Cascade

Cascade control is a control strategy in which one control loop provides the set point for another loop. It allows the process or part temperature to be reached quickly while minimizing overshoot. Cascade is used to optimize the performance of thermal systems with long lag times.
This graph illustrates a thermal system with a long lag time. Curve A represents a single-loop control system with PID parameters that allow a maximum heat-up rate. Too much energy is introduced and the set point is overshot. In most systems with long lag time, the process value may never settle out to an acceptable error. Curve C represents a singlecontrol system tuned to minimize overshoot. This results in unacceptable heat-up rates, taking hours to reach the final value. Curve B shows a cascade system that limits the energy introduced into the system, allowing an optimal heat-up rate with minimal overshoot.
Cascade control uses two control loops (outer and inner) to control the process. The outer loop (analog input 3) monitors the process or part temperature, which is then compared to the set point. The result of the comparison, the error signal, is acted on by the settings in a Cascade Outer Loop PID set (1 to 5), which then generates a power level for the outer loop. The set point for the inner loop is determined by the outer-loop power level and the Cascade Low Range/Deviation and the Cascade High Range/Deviation settings for analog input 3.
The inner loop (analog input 1) monitors the energy source (heating and cooling), which is compared to the inner loop set point generated by the outer loop. The result of the comparison, the error signal, is acted on by the settings in a Cascade Inner Loop PID set (1 to 5), which generates an output power level between -100% to $+100 \%$. If the power level is positive the heat will be on; if the power level is negative the cool will come on.

In Series F4 controllers, cascade control is available on channel 1 . Analog input 3 is used to measure the outer-loop process while analog input 1, the inner loop, is used to measure the energy source. Power from the energy sources are supplied by outputs 1A and 1B.
To set up and tune a system for cascade control, see the Operations Chapter.
Location in software: Setup Page and Operations Page.To set up and tune a system for cascade control, see the Operations Chapter.
Location in software: Setup Page and Operations Page

Figure 7.16a -- Control Lag Times

Figure 7.16b -- Cascade Control
\checkmark NOTE: CascadeLow Range and CascadeHigh RangeSe Points for Input 1 (as shown above) aresetup under Analog Input 3. Refer to Setup Chapter.

Figure 7.16c -- Cascade Example

Differential Control

The Series F4P with the enhanced control option can be configured to support differential control. Differential control allows the Series F4P to control one process at a difference to another process.
Analog input 3 is configured as the differential input. The process value measured on input 3 is added to the differential value [Set Diff.] to become the closed-loop control set point [CTL SP]. Four additional differential
values (Dgt. Diff. Value) can be enabled remotely through designated digital inputs. The nameable digital differential values are entered in the Operations Menu >Control Set Points.
Differential control is only available in enhanced control operation. Changes to the differential value or Analog Input 3 during auto-tune are not acted on until the autotune process is completed or aborted.
Location in software: Setup Page $>$ Analog Input 3 and Setup Page > Digital Input \times (1 to 4).

Figure 7.17a - Differential Control Application Example.

Ratio Control

The Series F4P with the enhanced control option can be configured to support ratio control, which is especially useful in applications that mix materials.
Analog input 3 is configured as the ratio input. The process value measured on input 3 multiplied by the ratio value [Set Ratio] becomes the closed loop control set point [CTL SP]. Four additional ratio values (Dgt. Ratio Value) can be enabled remotely through designated digi-
tal inputs. The nameable digital ratio values are entered in the Operations Menu > Control Set Points.
Ratio control is only available in enhanced control operation. Changes to the ratio value or analog input 3 during auto-tune are not acted on until the auto-tune process is completed.
Location in software: Setup Page $>$ Analog Input 3 and
Setup Page > Digital Input \times (1 to 4).

Figure 7.17b - Ratio Control Application Example.

Slidewire Control

The Series F4P with the enhanced control option can be configured to support slidewire valve control. In slidewire control a closed-loop process value, is measured at analog input 1 and compared to the control set point. The difference between the measured value and the control set point generates an error signal which is acted on by PID to generate a percent output. The percent output generated by PID is compared to the slidewire resistance measured at analog input 3 to determine if the valve needs to be closed or opened to decrease the difference between the closed loop process value and set point.
Two, time-proportioned outputs are required to control the valve position. Control output 1A is used to close the valve and output 1B is used to open the valve. Output 1A can be configured as heat (reverse) acting or cool (direct) acting. With output 1A set to cool (direct) the valve will open as the process value increases and power in the manual mode will be adjustable from 0% to 100%. With output 1A set to heat (reverse) the valve will close as the process value increases and power in the manual mode will be adjustable from 0% to $+100 \%$.
With PID generating a 25% output, output 1A set to cool (direct), a slide-wire resistance range of 100 to 1200 ohms and slidewire resistance measured on analog input 3 is greater than 275 ohms (25% of span) output 1B will be on opening the valve to increase the cooling effect to decrease the process value until the measured resistance equals 25% of span. With the same conditions and the measured resistance less than 275 ohms (25% of span)
output 1A will be closing the valve to decrease the cooling effect until the measured resistance equals 25% of span.
To select slideware control, set Analog Input $3>$ Sensor to Slidewire. The slidewire feature can be calibrated either automatically or manually.
Fine tune the behavior of the slidewire control using the Hunt and Hysteresis parameters, in Setup Page >Analog Input $3>$ Slidewire.
Location in software: Setup Page >Analog Input 3.

Figure 7.18a - Slidewire Hunt and Hysteresis.

Figure 7.18b - Slidewire Feedback Application Example.

Notes:

Notes:

8

Chapter Eght: Installation \& Wiring

Dimensions 8.1
Installing the Series F4P 8.3
Removing the Series F4P 8.4
Input-to-Output Isolation 8.5
Power Wiring 8.5
Sensor Installation Guidelines 8.5
Input 1 8.6
Inputs \times (2 and 3) 8.7
Digital Inputs $\times(1$ to 4$)$ 8.9
Outputs \times (1A and1B) 8.10
Retransmit and Alarm Output 8.11
Communications Wiring 8.12
Wiring Example 8.14
Wiring Notes 8.15

Dimensions

Figure 8.1 - Front View Dimensions and Gasket Gap Dimension.

Figure 8.2a — Side and Top View and Dimensions.

Panel Dimensions

Figure 8.2b - Multiple Panel Cutout Dimensions.

Installing the Series F4P Controller

Installing and mounting requires access to the back of the panel.
Tools required: one \#2 Phillips screwdriver.

1. Make the panel cutout using the mounting template dimensions in this chapter.
2. Insert the controller into the panel cutout. Check that the rubber gasket lies in its slot at the back of the bezel. Slide the retention collar over the case, with open holes facing the back of the case.
3. Align the mounting bracket with the screws tips pointed toward the panel. Squeezing the bowed sides of the bracket, push it gently but firmly over the case until the hooks snap into the slots at the front of the case.
4. If the installation does not require a NEMA $4 X$ seal, tighten the four screws with the Phillips screwdriver just enough to eliminate the spacing between the rubber gasket and the mounting panel.
For a NEMA 4X seal, tighten the four screws until the gap between the bezel and panel surface is .020 inch maximum. (See figure 3c). Make sure that you cannot move the controller back and forth in the cutout. If you can, you do not have a proper seal. Do not overtighten. Overtightening could damage the the mounting bracket.

Figure 8.3a - Gasket Seated on the Bezel.

Figure 8.3b - Retention Collar and Mounting Bracket.

Figure 8.3c - Tightening the Screws.

Removing the Series F4P Controller

The controller can be removed most easily by disengaging the mounting bracket hooks and pushing the controller forward through the panel. Be ready to support it as it slides forward through the panel.
Tools required: one \#2 Phillips screwdriver, one flat-head screwdriver and some means of supporting the controller as it slides out the front of the panel.

1. Remove all the wiring connectors from the back of the controller. Using the Phillips screwdriver, unscrew the four screws on the mounting bracket (two on top, two on bottom) until the tips are completely retracted into the shafts.
2. Slide the tip of a flat screwdriver between the case and the center top side of the mounting bracket. Rotate the screwdriver 90 degrees, stretching the bracket away from the case so the hooks on the bracket disengage from the slots on the case. Hold the bracket and press the controller forward slightly to prevent the disengaged hooks from snapping back into the slots.
3. Repeat this operation to disengage the hooks on the bottom side of the mounting bracket.
4. Press with one or two fingers on the lower half of the back of the unit so that the controller slides forward through the panel. Hold the bracket steady; do not pull back. Be ready to support the controller as it comes through the front panel. Remove the mounting brackets and retention collar from the back side of the panel.

Figure 8.4 - Disengaging the Mounting Bracket.

Wiring the Series F4P

Wiring options depend on the model number, which is printed on the label on the back of the controller. The model number codes are explained in the Appendix.
The labels on the sides and back of the controller contain some basic wiring information.

Input-to-Output Isolation

The Series F4P uses optical and transformer isolation to provide a barrier to prevent ground loops when using grounded sensors and/or peripheral equipment.
Here is a breakdown of the isolation barriers:

- Analog input 1 and all the digital inputs are grouped together.
- Analog inputs 2 and 3 are grouped together.
- All the control outputs and retransmit outputs are grouped together.
- Both alarm outputs are grouped together.
- Communications is isolated from the other inputs and outputs.

Figure 8.5a - Isolation Blocks.

WARNING: Provide a labeled switch or circuit breaker connected to the Series F4P power wiring as the means of disconnection for servicing. Failure to do so could result in damage to equipment and/or property, and/or injury or death to personnel.

Power Wiring

100 to 240 V = (ac/dc), nominal (85 to 264 actual) F4PH -

- - -- _ - - -

24 to 28 V ~ (ac/dc), nominal (21 to 30 actual) F4PL - \qquad -- - - -

The Series F4P has a non-operator-replaceable fuse Type T (timelag) rated at 2.0 or 5.0A @ $250 \mathrm{~V} \sim(\mathrm{ac})$.

Figure 8.5b — Power Wiring.

Sensor Installation Guidelines

Thermocouple inputs: Extension wire for thermocouples must be of the same alloy as the thermocouple to limit errors.
If a grounded thermocouple is required for input 2, the signal to input 3 must be isolated to prevent possible ground loops.
RTD input: Each 1Ω of lead wire resistance can cause a $+2^{\circ}$ F error when using a two-wire RTD. A three-wire RTD sensor overcomes this problem. All three wires must have the same electrical resistance (i.e., same gauge, same length, multi-stranded or solid, same metal).
Process input: I solation must be maintained between input 2 and input 3. If both input 2 and input 3 are process signals, a separate power supply and transmitter must be used for each input. These inputs must be electrically isolated from one another to prevent ground loops.

CAUTION: If high voltage is applied to a low-voltage unit, irreversible damage will occur.

WARNING: To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

CAUTION: Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs 1-4 to prevent a ground loop. A ground loop may cause incorrect readings or error codes. Failure to follow this guideline could result in damage to equipment and product.

WARNING: Process inputs may not have sensor break protection. Outputs can remain full on.

Input 1

Fgure 8.6a- Thermocouple
Available on all units.
Impedance: $20 \mathrm{M} \Omega$

Figure 8.6b - RTD (2- or 3-Wire) 100, 500 or 1000Ω Platinum
Available on all units.
The last two digits of the model number determine RTD calibration.

Fgure $8.6 \mathrm{c}-0-5 \mathrm{~V}=, 1-5 \mathrm{~V}=$ or $0-10 \mathrm{~V}=$ (dc) Process
Available on all units.
Input impedance: $20 \mathrm{k} \Omega$

Fgure $8.6 \mathrm{~d}-0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ Process
Available on all units.
Input impedance: 100Ω

Fgure $8.6 \mathrm{e}-0$ to 50 mV
Available on all units
Impedance: $20 \mathrm{M} \Omega$

Inputs x (2 and 3)

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

CAUTION: Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs $1-4$ to prevent a ground loop. A ground loop may cause incorrect readings or error codes. Failure to follow this guideline could result in damage to equipment and product.

Fgure 8.7a- Thermocouple
F4P _ - _ AB - _ _ _
Impedance: $20 \mathrm{M} \Omega$

Fgure 8.7b - RTD (2-wire) 100, 500 or 1000Ω Platinum F4P _ - _ AB - _ _ _
The last two digits of the model number determine RTD calibration.

Fgure 8.7c - RTD (3-wire) 100, 500 or 1000Ω Platinum F4P _ - _ AB - _ _ _
The last two digits of the model number determine RTD calibration.

Inputs x (2 and 3) (continued)

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

CAUTION: Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs 1-4 to prevent a ground loop. A ground loop may cause incorrect readings or error codes. Failure to follow this guideline could result in damage to equipment and product.

WARNING: Process inputs may not have sensor break protection. Outputs can remain full on.

Figure $8.8 \mathrm{a}-0-5 \mathrm{~V}=1-5 \mathrm{~V}=-=$ or $0-10 \mathrm{~V}=$ (dc) Process

Fgure $8.8 \mathrm{~b}-0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ Process

Figure $8.8 \mathrm{c}-\mathbf{0}$ to 50 mV
F4P _ - _ AB - _ _ _
Impedance: $20 \mathrm{M} \Omega$

Fgure 8.8d - Slidewire Input (Input 3 only)
F4P _- _ _ $A B$ - ___ _

Slidewire resistance range: 100 to 1200Ω

Digital Inputs x (1 to 4)

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

CAUTION: Maintain isolation between analog inputs 2 and 3, and between analog input 1 and digital inputs $1-4$ to prevent a ground loop. A ground loop may cause incorrect readings or error codes. Failure to follow this guideline could result in damage to equipment and product.

Figure 8.9 - Digital Inputs \mathbf{x} (1 to 4)

Voltage input

$0-1 \mathrm{~V}=$ (dc) E vent Input Low State
2-36V =- (dc) Event Input High State
Contact closure
$0-2 \mathrm{k} \Omega$ E vent Input Low State
$>7 \mathrm{k} \Omega$ Event Input High State

Outputs 1A and 1B

\checkmark Note: Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.

Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING: To avoid damage to property and equipment, and/or injury of loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

Fgure 8.10a- Solid-state Relay
$24 \mathrm{~V} \sim(\mathrm{ac})$ minimum, $253 \mathrm{~V} \sim$ (ac) maximum
0.5 amps , off-state impedance $31 \mathrm{M} \Omega$

Output 1A

Output 1B

Fgure 8.10b - Switched DC, Open Collector

- Switched dc configuration (COM not used)

DC + is 22 to $28 \mathrm{~V}=$ (dc)
Maximum supply current is 30 mA

- Open collector output (dc+ not used)

DC- is $42 \mathrm{~V}=$ (dc) maximum
Off: 10mA maximum leakage
On: 0.2V @ 0.5 amps sink

Output 1A

F4 P_-C \qquad

Figure $8.10 \mathrm{c}-0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-5 \mathrm{~V}=, 1-5 \mathrm{~V}=$ and $0-10 \mathrm{~V}=$ (dc) Process
mA maximum load impedance is 800Ω
$V=$ (dc) minimum load impedance is $1 K \Omega$

Output 1A Output 1B

Outputs 1A and 1B (continued)

Note: Switching inductive loads (relay coils, solenoids, etc.) with the mechanical relay, switched dc or solid-state relay output options requires use of an R.C. suppressor.
Watlow carries the R.C. suppressor Quencharc brand name, which is a trademark of ITW Paktron. Watlow Part No. 0804-0147-0000.

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

CAUTION: Maintain isolation between outputs $1 \mathrm{~A}, 1 \mathrm{~B}$ and between the retransmit outputs to prevent ground loops. A ground loop may cause incorrect readings or error codes. Failure to follow this guideline could result in damage to equipment and product.

Fgure 8.11a-Mechanical Relay

Output 1A

Output 1B

Retransmit and Alarm Output

Fgure 8.11b - Retransmit Outputs x (1 and 2)
mA maximum load impedance is 800Ω
$\mathrm{V}=$ (dc) minimum load impedance is $1 \mathrm{~K} \Omega$

Output 1

F4P--
or F 4 P
 $-{ }^{-1}--$ -2-

Output 2

F4P $]_{--------}^{-2}$

Fgure 8.11c - Alarm Outputs x (1 and 2)

Electromechanical relay without contact suppression
Form C, 2 amp , off-state impedance is $31 \mathrm{~m} \Omega$

Communications Wiring

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

Fgure 8.12a-EIATIA 485 and EIA/TIA 232 Communications

Fgure 8.12b - Termination for EAA-232 to EIA-485 Converter

If the system does not work properly, it may need termination resistors at each end of the network. A typical installation would require a 120-ohm resistor across the transmit/receive terminals (12 and 13) of the last controller in the network and the converter box or serial card. Pull-up and pull-down 1k ohm resistors may be needed on the first unit to maintain the correct voltage during the idle state.
Fgure 8.12c - EIA/TIA-232 Connections

Wire Color	F4 $\mathbf{2 3 2}$	DB 9 Connector	DB25 Connector
White	TX Pin 14	RX Pin 2	RX Pin 3
Red	RX Pin 15	TX Pin 3	TX Pin 2
Black	GND Pin 16	Gnd Pin 5	GND Pin 7
Green	GND Pin 24	N/U Pin 9	N/U Pin 22
Shield	N/C	Gnd Pin 5	Gnd Pin 7

Communications Wiring (continued)

WARNING: To avoid damage to property and equipment, and/or injury or loss of life, use National Electric Code (NEC) standard wiring practices to install and operate the Series F4P. Failure to do so could result in such damage, and/or injury or death.

Note: The CMC converter requires an external power supply when used with a laptop computer.

Fgure 8.13a-EIA/TIA 232 to EIA/TIA 485 Conversion

B\&B Converter (B\&B Electronics Manufacturing Company, 815 433-5100, www.bb-elec.com)

CMC Converter (CMC Connecticut Micro-Computer, Inc., 800-426-2872, www.2cmc.com)

Figure 8.13b - GPIB Conversion to EIA/TIA 232 or EIATIA 485 Communications with Modbus RTU

ICS GPIB Bus Interface (ICS Electronics, 925 416-1000, www.icselect.com)

Wiring Example

WARNING: To avoid potential electric shock and damage to property and equipment, use National Electric Code (NEC) safety practices when wiring and connecting this unit to a power source and to electrical sensors or peripheral devices. Failure to do so could result in injury or death.

WARNING:Install high- or low-temperature limit control protection in systems where an overtemperature or undertemperature fault condition could present a fire hazard or other hazard. Failure to comply with this recommendation may result in damage to equipment and property and injury to personnel.

Figure 8.14 - System Wiring Example

Wiring Notes

WARNING: To avoid potential electric shock and damage to property and equipment, use National Electric Code (NEC) safety practices when wiring and connecting this unit to a power source and to electrical sensors or peripheral devices. Failure to do so could result in injury or death.

WARNING: Install highor low-temperature limit control protection in systems where an overtemperature or undertemperature fault condition could present a fire hazard or other hazard. Failure to comply with this recommendation may result in damage to equipment and property and injury to personnel.

Sketch in your application on this page or a copy of it. See the wiring example in this chapter.

Figure 8.15 - Wiring Notes.

Notes

9

Chapter Nine: Communications

Exception Responses 9.1
Modbus Registers (Alphabetical Order) 9.2
Modbus Registers (Numerical Order) 9.11

Overview

The Series F4P uses Modbus as its communications protocol. Modbus is a standard protocol developed by A.E.G. Schneider. Modbus RTU enables a computer or PLC to read and write directly to registers containing the controller's parameters. With it you can read all of the controller's parameters with a few read commands.
If you already have a software application that uses Modbus, the M odbus Registers Table in this chapter will provide the register number and values (sometimes called enumerated types) for each parameter.

Dependencies between parameters do exist. For best results, program the parameters in the order in which they appear in the Software Map (inside back cover).

For basic information about writing an application using Modbus protocol, you may want to download the electronic F 4P Communications Guide from the Watlow web site: http://www.watlow.com/prodtechinfo. Search on the key words Data Communications.

Exception Responses

When a controller cannot process a command it returns an exception response and sets the high bit (0×80) of the command.
0×01 illegal command
0×02 illegal data address
$0 x 03$ illegal data value

controller address (one byte) ___ command $+0 \times 80$ exception code (0×01 or 0×02 or 0×03) CRC low byte \qquad CRC high byte \qquad

NOTE:
For ranges, conditions and other information, look up parameter names in the Index, which will direct you to earlier chapters in this book.

Series F4P Modbus Registers

Parameters Sorted Alphabetically

A list of all Modbus registers in numerical order follows this alphabetical list. Register numbers listed are relative. Add 40001 to convert to absolute addesses. For more information about parameters, see the Index.

901	${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$, System	720
r/w	$0{ }^{\circ} \mathrm{F}$	r/w
	$1{ }^{\circ} \mathrm{C}$	707
103	\% Power Output 1A, Status	r/w
r	Value	
107	\% Power Output 1B, Status	724
r	Value	r/w
3050	Activate Message, Digital Input 1	
r/w	0 Message 1	708
	1 Message 2	r/w
	2 Message 3	
	3 Message 4	725
3051	Activate Message, Digital Input 2	r/w
r/w	0 Message 1	
	1 Message 2	706
	2 Message 3	r/w
	3 Message 4	
3052	Activate Message, Digital Input 3	
r/w	0 Message 1	723
	1 Message 2	r/w
	2 Message 3	
	3 Message 4	
3053	Activate Message, Digital Input 4	716
r/w	0 Message 1	r/w
	1 Message 2	
	2 Message 3	
	3 Message 4	
303	Alarm 1 High Deviation, Alarm Set Points	r/w
r/w	1 to 30000	+/w
303	Alarm 1 High Set Point, Alarm Set Points	
r/w	<per sensor> to Alarm 1 Low Set Point	702
303	Alarm 1 Maximum High Rate, Alarm Set Points	r/w
r/w	Alarm 1 Low Maximum Rate +1 to 30000	
302	Alarm 1 Low Deviation, Alarm Set Points	
r/w	-19999 to -1	
302	Alarm 1 Low Set Point, Alarm Set Points	719
r/w	<per sensor> to Alarm 1 High Set Point	r/w
302	Alarm 1 Maximum Low Rate, Alarm Set Points	
r/w	-19999 to Alarm 1 Maximum Rate High -1	
102	Alarm 1, Status	
r	0 Off	836
	1 Alarm High	r/w
	2 Alarm Low	
322	Alarm 2 High Deviation, Alarm Set Points	
r/w	1 to 30000	
322	Alarm 2 High Set Point, Alarm Set Points	
r/w	<per sensor> to Alarm 2 Low Set Point	837
322	Alarm 2 Maximum High Rate, Alarm Set Points	r/w
r/w	Alarm 2 Low Maximum Rate +1 to 30000	
321	Alarm 2 Low Deviation, Alarm Set Points	
r/w	-9999 to -1	
321	Alarm 2 Low Set Point, Alarm Set Points	
r/w	<per sensor> to Alarm 2 High Set Point	200
321	Alarm 2 Maximum Low Rate, Alarm Set Points	
r/w	-19999 to Alarm 2 Maximum Rate High -1	
106	Alarm 2, Status	1915
r	0 Off	
	1 Alarm High	
	2 Alarm Low	
703	Alarm Hysteresis, Alarm Output 1	305
r/w	1 to 9999	r/w

Alarm Hysteresis, Alarm Output 2$1 \text { to } 9999$	
Alarm Logic, Alarm Output 1	
0	Open on Alarm
1	Close on Alarm
Alarm Logic, Alarm Output 2	
0	Open on Alarm
1	Cose on Alarm
Alarm Messages, Alarm Output 1	
0	Yes on Main Page
1	No
Alarm Messages, Alarm Output 2	
0	Yes on Main Page
1	No
Alarm Sides, Alarm Output 1	
0	Both
1	Low
2	High
Alarm Sides, Alarm Output 2	
0	Both
1	Low
2	High
Alarm Source, Alarm Output 1	
0	Input 1
1	Input 2
2	Input 3
Alarm Source, Alarm Output 2	
0	Input 1
1	Input 2
2	Input 3
Alarm Type, Alarm Output 1	
0	Off
1	Process
2	Deviation
3	Maximum Rate
Alarm Type, Alarm Output 2	
0	Off
1	Process
2	Deviation
3	Maximum Rate
Analog Range, Retransmit Output 1	
0	4 to 20 mA
1	0 to 20 mA
2	0 to 5 V
3	1 to 5V
4	0 to 10V
Analog Range, Retransmit Output 2	
0	4 to 20 mA
1	0 to 20 mA
2	0 to 5V
3	1 to 5V
4	0 to 10 V
Auto/Manual Mode, Status	
1	Auto Mode
2	Manual
Auto/Manual Slidewire Calibration, Analog Input 3 r/w	
0	Skip Calibration
1	Automatic
2	Manual
Autotune PID	
0	Tune Off

Alarm Hysteresis, Alarm Output 2
1 to 9999

0 Open on Alarm
1 Close on Alarm
Logic, Alarm Output 2
0 Open on Alarm
rm Messages, Alarm Output 1
0 Yes on Main Page
,

0 Yes on Main Page
1 No
Sides, Alarm Output 1
0 Both
1 Low
nigh

0 Both
1 Low
2 High
Source, Alarm Output
Input
1 Input 2
Alarm Source, Alarm Output 2
0 Input 1
1 Input 2
2 Input 3
arm Type, Alarm Output 1
Of
1 Process
2 Deviation
3 Maximum Rate
arm Type, Alarm Output 2
Of
1 Process
2 Deviation
3 Maximum Rate
Analog Range, Retransmit Output 1
04 to 20 mA
10 to 20 mA
31 to 5 V
40 to 10 V
log Range, Retransmit Output 2
04 to 20 mA
20 to 5 V
31 to 5 V
40 to 10 V
Auto/Manual Mode, Status
1 Auto Mode
2 Manual

0 Skip Calibration
1 Automatic
2 Manua
0 Tune off

	1 PID Set 1	1611	Calibrate Process Output 1B, 1.000V	
	2 PID Set 2	r/w	0 to 3000 V (in thousandths)	
	3 PID Set 3	1612	Calibrate Process Output 1B, 10.000V	
	4 PID Set 4	r/w	0 to 12000V (in thousandths)	
	5 PID Set 5	1610		
307	Autotune PID Type, Autotune PID	r/w	0 to 24000 mA (in thousandths)	\checkmark NOTE:
r/w	0 Heat Only,	1609	Calibrate Process Output 1B, 4.000mA	For moreinfor-
	1 Cool Only	r/w	0 to 6000 mA (in thousandths)	mation about
304	Autotune Set Point, System	1626	Calibrate Retransmit Output 1, 1.000V	parameters, se
r/w	50 to 150\%	r/w	0 to 3000V (in thousandths)	jarameers, see
884	Boost Delay Time, Control Set Points	1627	Calibrate Retransmit Output 1, 10.000 V 0 to 12000 V (in thousandths)	thelndex.
r/w	0 to 999 seconds			
881	Boost Power Mode, Control Output 1B	1625	Calibrate Retransmit Output 1, 20.000 mA 0 to 24000 mA (in thousandths)	
r/w	0 Auto Only	1624	Calibrate Retransmit Output 1, 4.000 mA	
	1 Auto/Manual Boost Power, Control Set Points	r/w	0 to 6000 mA (in thousandths)	
883 r/w	Boost Power, Control Set Points 0 to 1000\% (in tenths)	1631	Calibrate Retransmit Output 2, 1.000V	
309	Boost Set Point (1B), Control Set Points	r/w	0 to 3000 V (in thousandths)	
r/w	-19999 to 30000 [deviation] Set Point Low Limit to Set Point High Limit [process]	1632	Calibrate Retransmit Output 2, 10.000V 0 to 12000 V (in thousandths)	
882	Boost Set Point Type, Control Output 1B	1630	Calibrate Retransmit Output 2, 20.000 mA 0 to 24000 mA (in thousandths)	
r/w	0 Process 1 Deviation	1629	Calibrate Retransmit Output 2, 4.000mA	
885	Boost Type, Control Output 1B	r/w	0 to 6000 mA (in thousandths)	
r/w	$\begin{array}{ll}0 & \text { Boost on Power } \\ 1 & \text { Boost on Set Point }\end{array}$	605	Calibration Offset Value, Analog Input 1 Set Point Low Limit to Set Point High Limit	
1603	Calibrate Input 1, Calibration	615	Calibration Offset Value, Analog Input 2	
r/w	10.00 mV Thermocouple	r/w	Set Point Low Limit to Set Point High Limit	
	250.00 mV Thermocouple	625	Calibration Offset Value, Analog Input 3	
	$3 \quad 32^{\circ} \mathrm{F}$ Type J	r/w	Set Point Low Limit to Set Point High Limit	
	4 Ground	1927	Cascade High Deviation, Analog Input 3	
	5 Lead	r/w	1 to 9999	
	615.0 ohms RTD	1927	Cascade High Range, Analog Input 3	
	7380.0 ohms RTD	r/w	<sensor range>	
	80.000 V	305	Cascade Inner Loop, Autotune PID Set	
	910.000 V	r/w	Cascade 0 Tune Off	
	104.000 mA		1 PID Set 1	
	1120.000 mA		$2 \text { PID Set } 2$	
1608	Calibrate Input 2, Calibration		3 PID Set 3	
r/w	10.00 mV Thermocouple		4 PID Set 4	
	250.00 mV Thermocouple		5 PID Set 5	
	3 32º Type J	1922	Cascade Internal Set Point	
	4 Ground	,	Cascade Intemal Set Point	
	5 Lead	1926		
	$6 \quad 15.0$ ohms RID	1926 r/w	Cascade Low Deviation, Analog input 3 -19999 to -1	
	7380.0 ohms RTD			
	80.000 V	1926	Cascade Low Range, Analog Input 3	
	910.000 V	r/w	<sensor range>	
	10.4 .000 mA	1925	Cascade, Analog Input 3	
	1120.000 mA	r/w	0 Process Cascade	
1613	Calibrate Input 3, Calibration		1 Deviation Cascade	
r/w	10.00 mV Thermocouple	343	Cascade Outer Loop, Autotune PID Set	
	250.00 mV Thermocouple	r/w	0 Tune Off	
	$3 \quad 32^{\circ} \mathrm{F}$ Type J		1 PID Set 1	
	4 Ground		2 PID Set 2	
	5 Lead		3 PID Set 3	
	615.0 ohms RTD		4 PID Set 4	
	7 380.0 ohms RTD		5 PID Set 5	
	80.000 V	1501	CJC1 AtoD, Diagnostic	
	910.000 V	r	HHHH see ln 1 AD	
	104.000 mA	1500	CJC1 Temp, Diagnostic	
	1120.000 mA	r	$x \mathrm{xx} . \mathrm{x}$	
	1215.0 ohms Slidewire (F4P_- \qquad AB- \qquad models only) 13 1000.0 ohms Slidewire (F4P AB models only)	1532	CJC2-CJC3 AtoD, Diagnostic	
	Calibrate Proces	r	HHHH seeln 1 AD	
r/w	Calibrate Process Output 1A, 1.000V 0 to 3000 V (in thousandths)	1531	CJC2-CJC3 Temp, Diagnostic	
1607	Calibrate Process Output 1A, 10.000V	r 312	xx.x Clear Alarm 1, Key Press Simulation	
r/w	0 to 12000 V (in thousandths)	w	write any value	
1605	Calibrate Process Output 1A, 20.000 mA 0 to 24000 mA (in thousandths)	331 w	Clear Alarm 2, Key Press Simulation write any value	
1604	Calibrate Process Output 1A, 4.000 mA	311	Clear Error Input 1, Key Press Simulation	

w	write any value
330 w	Clear Error Input 2, Key Press Simulation write any value
349 w	Clear Error Input 3, Key Press Simulation write any value
5566	Clear Input 1 Offsets, Analog Input 1 $0 \text { No }$ $1 \text { Yes }$
$\begin{aligned} & 5567 \\ & \text { r/w } \end{aligned}$	Clear Input 2 Offsets, Analog Input 2 0 No 1 Yes
5568 r/w	Clear Input 3 Offsets, Analog Input 3 0 No 1 Yes
1315 w	Clear Locks, Set Lockout 0 Yes
1061	Condition, Digital Input 1
r/w	$\begin{array}{ll} 0 & \text { Low } \\ 1 & \text { High } \end{array}$
1063	Condition, Digital Input 2
r/w	$\begin{array}{ll}0 & \text { Low } \\ 1 & \text { High }\end{array}$
1065	Condition, Digital Input 3
r/w	$\begin{array}{ll} 0 & \text { Low } \\ 1 & \text { High } \end{array}$
1067	Condition, Digital Input 4
r/w	$\begin{array}{ll} 0 & \text { Low } \\ 1 & \text { High } \end{array}$
298	Control Set Point
r	
1140	Control Type, Analog Input 2
r/w	0 Normal
	3 Remote
	4 Alternate
1141	Control Type, Analog Input 3
r/w	0 Normal
	1 Ratio
	2 Differential
	3 Remote
	5 Cascade
$\begin{aligned} & \text { 1400-15 } \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Custom Main Page Parameters (P1 to P16)
	0 None
	1 Input 1
	2 Input 1 Value Bar
	3 Input 2
	4 Input 2 Value Bar
	5 Input 3
	6 Input 3 Value Bar
	7 Digital Set Point
	8 Digital Differential Value
	9 Differential Set Point
	10 Set Differential
	11 Digital Ratio Value
	12 Ratio Set Point
	13 Set Ratio
	14 Remote Set Point 2
	15 Remote Set Point 3
	16 Target Set Point
	17 Inner Set Point
	18 Set Point 1
	19 Set Point 1 Bar
	20 \% Power 1A
	21 \% Power 1B
	22 \% Power 1A Bar
	23 \% Power 1B Bar
	24 Tune Status 1
	25 Digital Inputs
	26 Active Ch1 PID Set
509	Cycle Time Type, Control Output 1A
r/w	0 Variable Burst 1 Fxed Time
559	Cycle Time Type, Control Output 1B
r/w	0 Variable Burst

1 Fixed Time
Cycle Time, Control Output 1A 1 to 600 in tenths
Cycle Time, Control Output 1B 1 to 600 in tenths
Dead Band 1A, Cascade PID Set 1 0 to 30000
Dead Band 1A, Cascade PID Set 2 0 to 30000
Dead Band 1A, Cascade PID Set 3 0 to 30000
Dead Band 1A, Cascade PID Set 4 0 to 30000
Dead Band 1A, Cascade PID Set 5 0 to 30000
Dead Band 1A, PID Set 1 0 to 30000
Dead Band 1A, PID Set 2 0 to 30000
Dead Band 1A, PID Set 3 0 to 30000
Dead Band 1A, PID Set 4 0 to 30000
Dead Band 1A, PID Set 5 0 to 30000
Dead Band 1B, Cascade PID Set 1 0 to 30000
Dead Band 1B, Cascade PID Set 2 0 to 30000
Dead Band 1B, Cascade PID Set 3 0 to 30000
Dead Band 1B, Cascade PID Set 4 0 to 30000
Dead Band 1B, Cascade PID Set 5 0 to 30000
Dead Band 1B, PID Set 1
0 to 30000
Dead Band 1B, PID Set 2
0 to 30000
Dead Band 1B, PID Set 3
0 to 30000
Dead Band 1B, PID Set 4
0 to 30000
Dead Band 1B, PID Set 5
0 to 30000
Decimal, Analog Input 1
00
10.0
20.00 (process)
30.000 (process)

Decimal, Analog Input 2
00
10.0
20.00 (process)
$3 \quad 0.000$ (process)
Decimal, Analog Input 3
00
10.0
20.00 (process)
$3 \quad 0.000$ (process)
Derivative 1A, Cascade PID Set 1 0 to 999 minutes (in hundredths)
Derivative 1A, Cascade PID Set 2 0 to 999 minutes (in hundredths)
Derivative 1A, Cascade PID Set 3 0 to 999 minutes (in hundredths)
Derivative 1A, Cascade PID Set 4
0 to 999 minutes (in hundredths)
Derivative 1A, Cascade PID Set 5
0 to 999 minutes (in hundredths)

503	Derivative 1A, PID Set 1 0 to 999 minutes (in hundredths)
513	Derivative 1A, PID Set 2 0 to 999 minutes (in hundredths)
$\begin{aligned} & 523 \\ & \text { r/w } \\ & 533 \\ & \text { r/w } \end{aligned}$	Derivative 1A, PID Set 3 0 to 999 minutes (in hundredths) Derivative 1A, PID Set 4 0 to 999 minutes (in hundredths)
543	Derivative 1A, PID Set 5 0 to 999 minutes (in hundredths)
$\begin{aligned} & 2613 \\ & \text { r/w } \end{aligned}$	Derivative 1B, Cascade PID Set 1 0 to 999 minutes (in hundredths)
$\begin{aligned} & 2633 \\ & \text { r/w } \end{aligned}$	Derivative 1B, Cascade PID Set 2 0 to 999 minutes (in hundredths)
$\begin{aligned} & 2653 \\ & \text { r/w } \end{aligned}$	Derivative 1B, Cascade PID Set 3 0 to 999 minutes (in hundredths)
$\begin{aligned} & 2673 \\ & \text { r/w } \end{aligned}$	Derivative 1B, Cascade PID Set 4 0 to 999 minutes (in hundredths)
$\begin{aligned} & 2693 \\ & \text { r/w } \end{aligned}$	Derivative 1B, Cascade PID Set 5 0 to 999 minutes (in hundredths)
553	Derivative 1B, PID Set 1 0 to 999 minutes (in hundredths)
563	Derivative 1B, PID Set 2 0 to 999 minutes (in hundredths)
573	Derivative 1B, PID Set 3 0 to 999 minutes (in hundredths)
$\begin{aligned} & 583 \\ & \text { r/w } \end{aligned}$	Derivative 1B, PID Set 4 0 to 999 minutes (in hundredths)
593	Derivative 1B, PID Set 5 0 to 999 minutes (in hundredths)
$\begin{aligned} & 314 \\ & \text { r/w } \end{aligned}$	Digital Differential Set Point 1, Control Set Points $\text { -19999 to } 30000$
$\begin{aligned} & 333 \\ & \text { r/w } \end{aligned}$	Digital Differential Set Point 2, Control Set Points $-19999 \text { to } 30000$
352	Digital Differential Set Point 3, Control Set Points $-19999 \text { to } 30000$
371	Digital Differential Set Point 4, Control Set Points $-19999 \text { to } 30000$
201	Digital Input 1, Status
r	$\begin{array}{ll}0 & \text { Low } \\ 1 & \text { High }\end{array}$
213	Digital Input 2, Status
r	$\begin{array}{ll} 0 & \text { Low } \\ 1 & \text { High } \end{array}$
225	Digital Input 3, Status
r	$\begin{array}{ll} 0 & \text { Low } \\ 1 & \text { High } \end{array}$
237	Digital Input 4, Status
r	$\begin{array}{ll} 0 & \text { Low } \\ 1 & \text { High } \end{array}$
$\begin{aligned} & 315 \\ & \text { r/w } \end{aligned}$	Digital Ratio Set Point 1, Control Set Points 0\% to 30000\%
$\begin{aligned} & 334 \\ & \text { r/w } \end{aligned}$	Digital Ratio Set Point 2, Control Set Points 0\% to 30000\%
353 r/w	Digital Ratio Set Point 3, Control Set Points 0\% to 30000\%
$\begin{aligned} & 372 \\ & \text { r/w } \end{aligned}$	Digital Ratio Set Point 4, Control Set Points 0\% to 30000\%
308	Digital Set Point 1, Control Set Points
r/w	Set Point Low Limit to Set Point High Limit
327	Digital Set Point 2, Control Set Points Set Point Low Limit to Set Point High Limit
346 r/w	Digital Set Point 3 Set Point Low Limit to Set Point High Limit
365	Digital Set Point 4, Control Set Points Set Point Low Limit to Set Point High Limit
1513 w	Display Test, Test 1 Perform Display Test
844 r/w	Duplex Output, Control Output 1A 0 Off

607	Error Latch, Analog Input 1
r/w	0 Self Clear
	1 Latch
617	Error Latch, Analog Input 2
r/w	0 Self dear
	1 Latch
627	Error Latch, Analog Input 3
r/w	0 Self Cear
	1 Latch
1303	Factory Page, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
880	Failure Mode, System
r/w	0 Bumpless Transfer
	1 Fxed
604	Filter Time, Analog Input 1
r/w	-60.0 to 60.0
614	Filter Time, Analog Input 2
r/w	-60.0 to 60.0
624	Filter Time, Analog Input 3
r/w	-60.0 to 60.0
1602	Full Defaults, Test
w	0 yes
700	Function, Control Output 1A
r/w	0 Off
	1 Heat [reverse]
	2 Cool [direct]
717	Function, Control Output 1B
r/w	0 Off
	1 Heat [reverse]
	2 Cool [direct]
$\begin{aligned} & 1060 \\ & \text { r/w } \end{aligned}$	Function, Digital Input 1
	0 Off
	1 Panel Lock
	2 Reset Alarm 1
	3 Reset Alarm 2
	4 Reset Both Alarms
	5 Control Outputs Off
	6 Digital Set Point
	7 Differential Set Point
	8 Digital Ratio
	9 Remote 2
	10 Remote 3
	11 Alternate Control
	12 Manual Control
	13 Reverse Outputs
	14 Activate Messages
	15 Lock Auto/Man
$\begin{aligned} & 1062 \\ & \text { r/w } \end{aligned}$	Function, Digital Input 2
	0 Off
	1 Panel Lock
	2 Reset Alarm 1
	3 Reset Alarm 2
	4 Reset Both Alarms
	5 Control Outputs Off
	6 Digital Set Point
	7 Differential Set Point
	8 Digital Ratio
	9 Remote 2
	10 Remote 3
	11 Alternate Control
	12 Manual Control
	13 Reverse Outputs
	14 Activate Messages
	15 Lock Auto/Man
$\begin{aligned} & 1064 \\ & \text { r/w } \end{aligned}$	Function, Digital Input 3
	0 Off
	1 Panel Lock
	2 Reset Alarm 1
	3 Reset Alarm 2
	4 Reset Both Alarms
	5 Control Outputs Off

	6 Digital Set Point	587	Hysteresis 1B, PID Set 4
	7 Differential Set Point	r/w	1 to 30000
	8 Digital Ratio	597	Hysteresis 1B, PID Set 5
	9 Remote 2	r/w	1 to 30000
	10 Remote 3	1504	Input 1 AtoD, Diagnostic
	11 Alternate Control		HHHH
	12 Manual Control		
	13 Reverse Outputs	101	Input 1 Error, Status
	14 Activate Messages	r	0 None
	15 Lock Auto/Man		1 AtoD Under How
$\begin{aligned} & 1066 \\ & \text { r/w } \end{aligned}$	Function, Digital Input 4		2 Sensor Under Range
	0 Off		3 Sensor Over Range
	1 Panel Lock		4 AtoD Over How 5 AtoD Timeout
	2 Reset Alarm 1		6 Open Loop
	3 Reset Alarm 2		Input 1 Failure System
	4 Reset Both Alarms	903	Input 1 Failure, System
	5 Control Outputs Off	r/w	0\% to High Power Limit (heat only or cool only)
	6 Digital Set Point		Cool High Power Limit to Heat High Power Limit
	7 Differential Set Point		(heat/cool or cool/heat)
	8 Digital Ratio	210	Input 1 Open Loop, Status
	9 Remote 2	r	(0) Off, (1) On
	10 Remote 3	100	Input 1 Value, Status
	11 Alternate Control	r	xx
	12 Manual Control	8	Input 1, Diagnostic
	13 Reverse Outputs	r	0 None
	14 Activate Messages		8 Univ
	15 Lock Auto/Man	1505	Input 2 AtoD, Diagnostic
714	High Power Limit, Control Output 1A Low Limit+1 to 100\%	,	HHHH
r/w		9	Input 2, Diagnostic
731	High Power Limit, Control Output 1B Low Limit+1 to 100\%	r	0 None
r/w			8 Univ
711	High Scale, Retransmit Output 1 -19999 to 30000 (maximum sensor range)	1506	Input 3 AtoD, Diagnostic HHH
728	High Scale, Retransmit Output 2 -19999 to 30000 (maximum sensor range)	10	Input 3, Diagnostic
r/w		r	Univ
2607	Hysteresis 1A, Cascade PID Set 1	2601	Integral 1A, Cascade PID Set 1
r/w		r/w	0 to 9999 minutes in hundredths
2627	Hysteresis 1A, Cascade PID Set 2 1 to 30000	2621	Integral 1A, Cascade PID Set 2
r/w		r/w	0 to 9999 minutes in hundredths
2647	Hysteresis 1A, Cascade PID Set 3 1 to 30000	2641	Integral 1A, Cascade PID Set 3
r/w		r/w	0 to 9999 minutes in hundredths
2667	Hysteresis 1A, Cascade PID Set 4 1 to 30000	2661	Integral 1A, Cascade PID Set 4
r/w		r/w	0 to 9999 minutes in hundredths
2687	Hysteresis 1A, Cascade PID Set 5 1 to 30000	2681	Integral 1A, Cascade PID Set 5
r/w		r/w	0 to 9999 minutes in hundredths
507	Hysteresis 1A, PID Set 1 1 to 30000	501	Integral 1A, PID Set 1
r/w		r/w	0 to 9999 minutes in hundredths
517	Hysteresis 1A, PID Set 2 1 to 30000	511	Integral 1A, PID Set 2
r/w		r/w	0 to 9999 minutes in hundredths
527	Hysteresis 1A, PID Set 3 1 to 30000	521	Integral 1A, PID Set 3
r/w		r/w	0 to 9999 minutes in hundredths
537	Hysteresis 1A, PID Set 4 1 to 30000	531	Integral 1A, PID Set 4
r/w		r/w	0 to 9999 minutes in hundredths
547	Hysteresis 1A, PID Set 5 1 to 30000	541	Integral 1A, PID Set 5
r/w		r/w	0 to 9999 minutes in hundredths
2617	Hysteresis 1B, Cascade PID Set 1$1 \text { to } 30000$	2611	Integral 1B, Cascade PID Set 1
r/w		r/w	0 to 9999 minutes in hundredths
2637	Hysteresis 1B, Cascade PID Set 2 1 to 30000	2631	Integral 1B, Cascade PID Set 2
r/w		r/w	0 to 9999 minutes in hundredths
2657	Hysteresis 1B, Cascade PID Set 3 1 to 30000	2651	Integral 1B, Cascade PID Set 3
r/w		r/w	0 to 9999 minutes in hundredths
2677	Hysteresis 1B, Cascade PID Set 4 1 to 30000	2671	Integral 1B, Cascade PID Set 4
r/w		r/w	0 to 9999 minutes in hundredths
2697	Hysteresis 1B, Cascade PID Set 5 1 to 30000	2691	Integral 1B, Cascade PID Set 5
r/w		r/w	0 to 9999 minutes in hundredths
557	Hysteresis 1B, PID Set 11 to 30000	551	Integral 1B, PID Set 1
r/w		r/w	0 to 9999 minutes in hundredths
567	Hysteresis 1B, PID Set 2 1 to 30000	561	Integral 1B, PID Set 2
r/w		r/w	0 to 9999 minutes in hundredths
577	Hysteresis 1B, PID Set 3 1 to 30000	571	Integral 1B, PID Set 3
r/w		r/w	0 to 9999 minutes in hundredths

581/w	Integral 1B, PID Set 4 0 to 9999 minutes in hundredths
591	Integral 1B, PID Set 5
r/w	0 to 9999 minutes in hundredths
704	Latching, Alarm Output 1
r/w	0 Alarm Self-clears
	1 Alarm Latches
721	Latching, Alarm Output 2
r/w	0 Alarm Self-clears
	1 Alarm Latches
1914	LED Intensity, Process Display
r/w	0 to 15
1515	Line Frequency, Diagnostic
r	xx
715	Low Power Limit, Control Output 1A
r/w	0\% to High Limit-1
732	Low Power Limit, Control Output 1B
r/w	0\% to High Limit-1
710	Low Scale, Retransmit Output 1
r/w	-19999 to 30000 (minimum sensor range)
727	Low Scale, Retransmit Output 2
r/w	-19999 to 30000 (minimum sensor range)
454	Manual to Auto Transfer, System
r/w	0 Restore Set Point
	1 Reverse Bumpless
5	Manufacturing Date, Diagnostic
r	xxxx
453	Maximum Transfer Cool, System
r/w	-100\% to 0\%
452	Maximum Transfer Heat, System
r/w	0\% to 100\%
4501-17	Message 1 (Line 01, Char 01-17), Static Message r/w
4521-37	Message 1 (Line 02, Char 01-17), Static Message r/w
4541-57	Message 1 (Line 03, Char 01-17), Static Message r/w
4561-77	Message 1 (Line 04, Char 01-17), Static Message r/w
4581-97	Message 2 (Line 01, Char 01-17), Static Message r/w
4601-17	Message 2 (Line 02, Char 01-17), Static Message r/w
4621-37	Message 2 (Line 03, Char 01-17), Static Message r/w
4641-57	Message 2 (Line 04, Char 01-17), Static Message r/w
4661-77	Message 3 (Line 01, Char 01-17), Static Message r/w
4681-97	Message 3 (Line 02, Char 01-17), Static Message r/w
4701-17	Message 3 (Line 03, Char 01-17), Static Message r/w
4721-37	Message 3 (Line 04, Char 01-17), Static Message r/w
4741-57	Message 4 (Line 01, Char 01-17), Static Message r/w
4761-77	Message 4 (Line 02, Char 01-17), Static Message r/w
4781-97	Message 4 (Line 03, Char 01-17), Static Message r/w
4801-17	Message 4 (Line 04, Char 01-17), Static Message r/w
$\begin{aligned} & 3060 \\ & \text { r/w } \end{aligned}$	Message Display Time, Digital Input 1 $0 \text { to } 999$
3061	Message Display Time, Digital Input 2
r/w	0 to 999
$\begin{aligned} & 3062 \\ & \text { r/w } \end{aligned}$	Message Display Time, Digital Input 3 $0 \text { to } 999$
$\begin{aligned} & 3063 \\ & \text { r/w } \end{aligned}$	Message Display Time, Digital Input 4 0 to 999
0	Model, Diagnostic
r	5280 4P
3200-09	Name (Char 01-10), Alarm Output 1
r/w	ASClI codes A to Z, 0 to 9, space
$\begin{aligned} & \text { 3210-19 } \\ & \text { r/w } \end{aligned}$	Name (Char 01-10), Alarm Output 2 ASCII codes A to Z, 0 to 9 , space
$\begin{aligned} & 3000-06 \\ & \text { r/w } \end{aligned}$	Name (Char 01-07), Digital Input 1 ASCII codes A to Z, 0 to 9 , space
3010-16	Name (Char 01-07), Digital Input 2
r/w	ASCll codes A to Z, 0 to 9, space
$\begin{aligned} & 3020-26 \\ & \text { r/w } \end{aligned}$	Name (Char 01-07), Digital Input 3 ASCII codes A to Z, 0 to 9 , space
3030-36	Name (Char 01-07), Digital Input 4

r/w	ASCII codes A to Z, 0 to 9, space
$\begin{aligned} & \text { 5506-15 } \\ & \text { r/w } \end{aligned}$	Offset Point 01-10, Analog Input 1, rw -19999 or Input Offet ($x-1$) Value +1 to Input Offset (x+1) Value - 1 or 30000
$\begin{aligned} & \text { 5516-25 } \\ & \text { r/w } \end{aligned}$	Offset Point 01-10, Analog Input 2, r/w -19999 or Input Offset ($x-1$) Value +1 to Input Offset ($\mathrm{x}+1$) Value - 1 or 30000
$\begin{aligned} & \text { 5526-35 } \\ & \text { r/w } \end{aligned}$	Offset Point 01-10, Analog Input 3, r/w -19999 or Input Offset ($x-1$) Value +1 to Input Offset ($x+1$) Value - 1 or 30000
5572 r/w	Offset Type, Analog Input 1 0 Single Linear 1 Multiple Point
5573 r/w	Offset Type, Analog Input 2 0 Single Linear 1 Multiple Point
5574 r/w	Offset Type, Analog Input 3 0 Single Linear 1 Multiple Point
$\begin{aligned} & \text { 5536-45 } \\ & \text { r/w } \end{aligned}$	Offset Value 01-10, Analog Input 1 -1000 to 1000
$\begin{aligned} & \text { 5546-55 } \\ & \text { r/w } \end{aligned}$	Offset Value 01-10, Analog Input 2 $-1000 \text { to } 1000$
$\begin{aligned} & 5556-65 \\ & r / w \end{aligned}$	Offset Value 01-10, Analog Input 3 $-1000 \text { to } 1000$
904	Open Loop Detect, System
r/w	$\begin{array}{ll} 0 & \text { Off } \\ 1 & \text { On } \end{array}$
1308	Operations, Alarm Set Point, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
1306	Operations, Autotune PID, Set Lockoutr/w
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
1318	Operations, Control Set Point, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
1307	Operations, Edit PID, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
200	Operations Mode, Status
r/w	1 Auto Mode
	2 Manual
1316	Operations, PID Crossover, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
1317	Operations, Ramp Set Point, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
1319	Operations, Remote Set Point, Set Lockout
r/w	0 Full Access
	1 Read Only
	2 Password
	3 Hidden
16	Output 1A, Diagnostic
r	0 None
	1 Mechanical Relay
	2 SSR
	3 DC
	4 Process

17	Output 1B, Diagnostic
r	0 None
	1 Mechanical Relay
	2 SSR
	3 DC
	4 Process
1961	PID Cross 1-2, Operations
r/w	-19999 to 30000
1962	PID Cross 2-3, Operations
r/w	-19999 to 30000
1963	PID Cross 3-4, Operations
r/w	-19999 to 30000
1964	PID Cross 4-5, Operations
r/w	-19999 to 30000
1951	PID Crossover, Operations
r	0 Off
	1 Process
	2 Set Point
900	PID Units, System
r/w	0 US (Reset/Rate
	1 SI (Integra//Derivative)
1910	Process Display
r/w	0 Input 1
	1 Alternating
$\begin{aligned} & 1911 \\ & \text { r/w } \end{aligned}$	Process Display Time, Input 1 0 to 999 seconds
$\begin{aligned} & 1912 \\ & \text { r/w } \end{aligned}$	Process Display Time, Input 2 0 to 999 seconds
1913	Process Display Time, Input 3
r/w	0 to 999 seconds
701	Process, Control Output 1A
r/w	04 to 20 mA
	10 to 20 mA
	20 to 5V
	31 to 5V
	40 to 10V
	520 to 4 mA [reverse value]
718	Process, Control Output 1B
r/w	04 to 20 mA
	10 to 20 mA
	20 to 5V
	31 to 5V
	40 to 10V
	520 to 4 mA [reverse value]
$\begin{aligned} & 2600 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, Cascade PID Set 1 0 to 30000
$\begin{aligned} & 2620 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, Cascade PID Set 2 0 to 30000
$\begin{aligned} & 2640 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, Cascade PID Set 3 0 to 30000
$\begin{aligned} & 2660 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, Cascade PID Set 4 0 to 30000
$\begin{aligned} & 2680 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, Cascade PID Set 5 0 to 30000
$\begin{aligned} & 500 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, PID Set 1 0 to 30000
$\begin{aligned} & 510 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, PID Set 2 0 to 30000
$\begin{aligned} & 520 \\ & \text { r/w } \end{aligned}$	Proportional Band 1A, PID Set 3 0 to 30000
530	Proportional Band 1A, PID Set 4
r/w	0 to 30000
540	Proportional Band 1A, PID Set 5 0 to 30000
$\begin{aligned} & 2610 \\ & \text { r/w } \end{aligned}$	Proportional Band 1B, Cascade PID Set 1 0 to 30000
2630	Proportional Band 1B, Cascade PID Set 2
rr/w	0 to 30000
$\begin{aligned} & 2650 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Proportional Band 1B, Cascade PID Set 3 0 to 30000

$\begin{aligned} & 2622 \\ & \text { r/w } \end{aligned}$	Reset 1A, Cascade PID Set 2 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 2642 \\ & \text { r/w } \end{aligned}$	Reset 1A, Cascade PID Set 3 0 to 9999 repeats per minute (in hundredths)
2662	Reset 1A, Cascade PID Set 4 0 to 9999 repeats per minute (in hundredths)
2682	Reset 1A, Cascade PID Set 5 0 to 9999 repeats per minute (in hundredths)
502	Reset 1A, PID Set 1 0 to 9999 repeats per minute (in hundredths)
512	Reset 1A, PID Set 2 0 to 9999 repeats per minute (in hundredths)
522	Reset 1A, PID Set 3 0 to 9999 repeats per minute (in hundredths)
532	Reset 1A, PID Set 4 0 to 9999 repeats per minute (in hundredths)
542	Reset 1A, PID Set 5 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 2612 \\ & r / w \end{aligned}$	Reset 1B, Cascade PID Set 1 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 2632 \\ & \text { r/w } \end{aligned}$	Reset 1B, Cascade PID Set 2 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 2652 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Reset 1B, Cascade PID Set 3 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 2672 \\ & r / w \end{aligned}$	Reset 1B, Cascade PID Set 4 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 2692 \\ & \text { r/w } \end{aligned}$	Reset 1B, Cascade PID Set 5 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 552 \\ & \text { r/w } \end{aligned}$	Reset 1B, PID Set 1 0 to 9999 repeats per minute (in hundredths)
562	Reset 1B, PID Set 2 0 to 9999 repeats per minute (in hundredths)
572	Reset 1B, PID Set 3 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 582 \\ & \text { r/w } \end{aligned}$	Reset 1B, PID Set 4 0 to 9999 repeats per minute (in hundredths)
$\begin{aligned} & 592 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Reset 1B, PID Set 5 0 to 9999 repeats per minute (in hundredths)
1601	Restore Calibration, Inputs 1-3
w	0 Yes (Input 1)
	1 Yes (Input 2)
	2 Yes (Input 3)
20	Retransmit 1, Diagnostic
r	0 None
	4 Process
21	Retransmit 2, Diagnostic
r	0 None
	4 Process
709	Retransmit Source, Retransmit Output 1
r/w	0 Off
	1 Input 1
	2 Input 2
	3 Input 3
	4 Set Point
	5 Channel 1 Power
726	Retransmit Source, Retransmit Output 2
r/w	0 Off
	1 Input 1
	2 Input 2
	3 Input 3
	4 Set Point
	5 Channel 1 Power
4	Revision, Diagnostic
r	0.00 to 9.99
25	Save Changes to EE
w	0 Save
681	Scale High, Analog Input 1
r/w	Depends on sensor and decimal point selection.
683	Scale High, Analog Input 2
r/w	Depends on sensor and decimal point selection.

 Restore Calibration, Inputs 1-3
 0 Yes (Input 1)
 1 Yes (Input 2)
 etransmit 1, Diagnostic
 0 None
 4 Process
 ransmit 2, Diagnostic
 0 None
 Process
 0 Off
 1 Input 1
 Input 2
 Input 3
 4 Set Point
 5 Channel 1 Power
 transmit Source, Retransmit Output 2
 1 Input 1
 2 Input 2
 3 Input 3
 4 Set Point
 5 Channel 1 Power
 Revision, Diagnostic
 0.00 to 9.99
 Save Changes to EE
 0 Save
 Depends on sensor and decimal point selection.
 Depends on sensor and decimal point selection.
 Scale High, Analog Input 3
Depends on sensor and decimal point selection.
Scale Low, Analog Input 1
Depends on sensor and decimal point selection.
Scale Low, Analog Input 2
Depends on sensor and decimal point selection.
Scale Low, Analog Input 3 Depends on sensor and decimal point selection.
Scale Offset, Retransmit Output 1 -9999 to 9999 Range Low to Range High
Scale Offset, Retransmit Output 2 -9999 to 9999 Range Low to Range High
Scaling, Input 1
0 Normal Scaling
1 Inverse Scaling
Scaling, Input 2
0 Normal Scaling
1 Inverse Scaling
Scaling, Input 3
0 Normal Scaling
1 Inverse Scaling
Sensor, Analog Input 1
0 Thermocouple
1 RTD
2 Process
Sensor, Analog Input 2 0 Thermocouple
1 RID
2 Process
4 Off
Sensor, Analog Input 3 0 Thermocouple
1 RTD
2 Process
3 Slidewire
4 Off
Serial Number (first part), Diagnostic 000000 to 999999
Serial Number (second part), Diagnostic 000000 to 999999
Set Differential Value -19999 to 30000
Set Point 1, Main Page Value
Set Point High Limit, Analog Input 1 Depends on Sensor
Set Point High Limit, Analog Input 2 Depends on Sensor
Set Point High Limit, Analog Input 3 Depends on Sensor
Set Point Low Limit, Analog Input 1 Depends on Sensor
Set Point Low Limit, Analog Input 2 Depends on Sensor
Set Point Low Limit, Analog Input 3 Depends on Sensor
Set Point, Set Lockout
0 Full Access
1 Read Only
Set Ratio Value
Set/Change Password, Set Lockout
Four characters, ASCII codes 0-9, A-Z
Setup Page, Set Lockout
0 Full Access
1 Read Only
2 Password
3 Hidden

1923	Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$, System
r/w	0 No, Upper Display
	1 Yes, Upper Display
313	Silence Alarm 1, Key Press Simulation
w	0 to 9999
332	Silence Alarm 2, Key Press Simulation 0 to 9999
w	
705	Silencing, Alarm Output 1
r/w	0 No
	1 Yes
722	Silencing, Alarm Output 2
r/w	0 No
	1 Yes
1916	Slidewire Deadband, Analog Input 3
r/w	3 to 1000\% (in tenths)
$\begin{aligned} & 1917 \\ & \text { r/w } \end{aligned}$	Slidewire Hysteresis, Analog Input 3 0 to 1000\% (in tenths)
$\begin{aligned} & 1918 \\ & r / w \end{aligned}$	Slidewire Learn Closed, Analog Input 3 (Cose the valve manually.)
$\begin{aligned} & 1919 \\ & \text { r/w } \end{aligned}$	Slidewire Learn Open, Analog Input 3 (Open the valve manually.)
3	Software Number, Diagnostic
r	00 to 99
5569	Square Root, Analog Input 1
r/w	0 Off
	1 On
5570	Square Root, Analog Input 2
r/w	0 Off
	1 On
5571	Square Root, Analog Input 3
r/w	0 Off
	1 On
1514	Test Outputs, Test
w	0 All Off
	1 Output 1A
	2 Output 1B
	5 Retransmit 1
	6 Retransmit 2
	7 Alarm 1
	8 Alarm 2
	9 All On
	10 Communications
601	
r/w	Sensor Type, Analog Input 1
	1 K
	2 T
	3 E
	4 N
	5 C
	6 D
	7 PT2
	8 R
	9 S
	10 B
	11 DIN 100Ω RID
	12 JIS 100 2 RTD
	134 to 20 mA
	140 to 20 mA
	150 to 5V
	161 to 5V
	170 to 10 V
	180 to 50 mV
	23 DIN 500 2 RID
	24 JIS 500Ω RTD
	25 DIN $1 \mathrm{k} \Omega$ RTD
	26 JIS 1k Ω RTD

$\begin{aligned} & 611 \\ & r / w \end{aligned}$	
$\begin{aligned} & 621 \\ & \text { r/w } \end{aligned}$	Sensor Type, Analog Input 3 0 J 1 K 2 T 3 E 4 N 5 C 6 D 7 PT2 8 R 9 S 10 B 11 DIN 100Ω RTD 12 JIS 100 Ω RTD 134 to 20 mA 140 to 20 mA 150 to 5 V 161 to 5 V 170 to 10 V 180 to 50 mV 19 Slidewire 23 DIN 500Ω RID 24 JIS 500Ω RTD 25 DIN 1k Ω RTD 26 JIS $1 \mathrm{k} \Omega$ RTD
$\begin{aligned} & 3070-72 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Units (Char 1-3), Analog Input 1 ASCII codes 0-9, A-Z, space
$\begin{aligned} & 3073-75 \\ & \text { r/w } \end{aligned}$	Units (Char 1-3), Analog Input 2 ASClI codes 0-9, A-Z, space
$\begin{aligned} & 3076-78 \\ & \mathrm{r} / \mathrm{w} \end{aligned}$	Units (Char 1-3), Analog Input 3 ASCII codes 0-9, A-Z, space
608	Units, Analog Input 1 0 Temperature 1 Units [3 characters]
618 r/w	Units, Analog Input 2 0 Temperature 1 Units [3 characters]
628 r/w	Units, Analog Input 3 0 Temperature 1 Units [3 characters]

612	Set Point Low Limit, Analog Input 2
613	Set Point High Limit, Analog Input 2
614	Filter Time, Analog Input 2
615	Calibration Offset Value, Analog Input 2
616	Decimal, Analog Input 2
617	Eror Latch, Analog Input 2
618	Units, Analog Input 2
620	Sensor, Analog Input 3
621	Sensor Type, Analog Input 3
622	Set Point Low Limit, Analog Input 3
623	Set Point High Limit, Analog Input 3
624	Filter Time, Analog Input 3
625	Calibration Offset Value, Analog Input 3
626	Decimal, Analog Input 3
627	Eror Latch, Analog Input 3
628	Units, Analog Input 3
680	Scale Low, Analog Input 1
681	Scale High, Analog Input 1
682	Scale Low, Analog Input 2
683	Scale High, Analog Input 2
684	Scale Low, Analog Input 3
685	Scale High, Analog Input 3
693	Scaling, Analog Input 1
694	Scaling, Analog Input 2
695	Scaling, Analog Input 3
700	Function, Control Output 1A
701	Process, Control Output 1A
702	Alarm Type, Alarm Output 1
703	Alarm Hysteresis, Alarm Output 1
704	Latching, Alarm Output 1
705	Silencing, Alarm Output 1
706	Alarm Sides, Alarm Output 1
707	Alarm Logic, Alarm Output 1
708	Alarm Messages, Alarm Output 1
709	Retransmit Source, Retransmit Output 1
710	Low Scale, Retransmit Output 1
711	High Scale, Retransmit Output 1
712	Scale Offset, Retransmit Output 1
714	High Power Limit, Control Output 1A
715	Low Power Limit, Control Output 1A
716	Alarm Source, Alarm Output 1
717	Function, Control Output 1B
718	Process, Control Output 1B
719	Alarm Type, Alarm Output 2
720	Alarm Hysteresis, Alarm Output 2
721	Latching, Alarm Output 2
722	Silencing, Alarm Output 2
723	Alarm Sides, Alarm Output 2
724	Alarm Logic, Alarm Output 2
725	Alarm Messages, Alarm Output 2
726	Retransmit Source, Retransmit Output 2
727	Low Scale, Retransmit Output 2
728	High Scale, Retransmit Output 2
729	Scale Offset, Retransmit Output 2
731	High Power Limit, Control Output 1B
732	Low Power Limit, Control Output 1B
733	Alarm Source, Alarm Output 2
836	Analog Range, Retransmit Output 1
837	Analog Range, Retransmit Output 2
844	Duplex Output, Control Output 1A
880	Failure Mode, System
881	Boost Power Mode, Control Output 1B
882	Boost Set Point Type, Control Output 1B
883	Boost Power, Control Set Point
884	Boost Delay Time, Control Set Point
885	Boost Type, Control Output 1B
900	PID Units, System
901	${ }^{\circ} \mathrm{For}{ }^{\circ} \mathrm{C}$, System
903	Input 1 Failure, System
904	Open Loop Detect, System
1060	Function, Digital Input 1
1061	Condition, Digital Input 1
1062	Function, Digital Input 2
1063	Condition, Digital Input 2
1064	Function, Digital Input 3
1065	Condition, Digital Input 3
1066	Function, Digital Input 4
1067	Condition, Digital Input 4

1100	Ramp to Set Point Mode, Operations
1101	Ramp to Set Point Rate, Operations
1102	Ramp to Set Point Scale, Ramp to Set Point
1140	Control Type, Analog Input 2
1141	Control Type, Analog Input 3
1300	Set Point, Set Lockout
1302	Setup Page, Set Lockout
1303	Factory Page, Set Lockout
1306	Operations, Autotune PID, Set Lockout
1307	Operations, Edit PID, Set Lockout
1308	Operations, Alarm Set Point, Set Lockout
1315	Clear Locks, Set Lockout
1316	Operations, PID Crossover, Set Lockout
1317	Operations, Ramp Set Point, Set Lockout
1318	Operations, Control Set Point, Set Lockout
1319	Remote/Local Set Point Operation, Set Lockout
1330-33	Set/Change Password, Set Lockout
1400-15	Oustom Main Page Parameters (P1 to P16)
1500	CJC1 Temp, Diagnostic
1501	CJC1 AtoD, Diagnostic
1504	Input 1 AtoD, Diagnostic
1505	Input 2 AtoD, Diagnostic
1506	Input 3 AtoD, Diagnostic
1513	Display Test, Test
1514	Test Outputs, Test
1515	Line Frequency, Diagnostic
1531	CJC2-CNC3 Temp, Diagnostic
1532	CLC-CM AtoD, Diagnostic
1601	Restore Calibration, Inputs 1-3
1602	Full Defaults, Test
1603	Calibrate Input 1, Calibration
1604	Calibrate Process Output 1A, 4.000mA
1605	Calibrate Process Output 1A, 20.000 mA
1606	Calibrate Process Output 1A, 1.000V
1607	Calibrate Process Output 1A, 10.000V
1608	Calibrate Calibrate Input 2, Calibration
1609	Calibrate Process Output 1B, 4.000mA
1610	Calibrate Process Output 1B, 20.000 mA
1611	Calibrate Process Output 1B, 1.000V
1612	Calibrate Process Output 1B, 10.000V
1613	Calibrate Input 3, Calibration
1624	Calibrate Retransmit Output 1, 4.000mA
1625	Calibrate Retransmit Output 1, 20.000 mA
1626	Calibrate Retransmit Output 1, 1.000V
1627	Calibrate Retransmit Output 1, 10.000 V
1629	Calibrate Retransmit Output 2, 4.000 mA
1630	Calibrate Retransmit Output 2, 20.000 mA
1631	Calibrate Retransmit Output 2, 1.000V
1632	Calibrate Retransmit Output 2, 10.000V
1910	Process Display
1911	Process Display Time, Input 1
1912	Process Display Time, Input 2
1913	Process Display Time, Input 3
1914	LED Intensity, Process Display
1915	Auto/Manual Slidewire Calibration, Analog Input
1916	Slidewire Deadband, Analog Input 3
1917	Slidewire Hysteresis, Analog Input 3
1918	Slidewire Learn Cosed, Analog Input 3
1919	Slidewire Learn Open, Analog Input 3
1922	Cascade Internal Set Point
1923	Show ${ }^{\circ}$ For ${ }^{\circ} \mathrm{C}$, System
1925	Cascade, Analog Input 3
1926	Cascade Low Deviation, Analog Input 3
1926	Cascade Low Range, Analog Input 3
1927	Cascade High Deviation, Analog Input 3
1927	Cascade High Range, Analog Input 3
1951	PID Crossover, Operations
1961	PID Oross 1-2, Operations
1962	PID Cross 2-3, Operations
1963	PID Cross 3-4, Operations
1964	PID Oross 4-5, Operations
2600	Proportional Band 1A, Cascade PID Set 1
2601	Integral 1A, Cascade PID Set 1
2602	Reset 1A, Cascade PID Set 1
2603	Derivative 1A, Cascade PID Set 1
2604	Rate 1A, Cascade PID Set 1
2605	Dead Band 1A, Cascade PID Set 1
2607	Hysteresis 1A, Cascade PID Set 1

2680
2681
2682
2683

Nar (Char 01-07), Digital Input 3010-3016 Name (Char 01-07), Digital Input 2 3020-3026 Name (Char 01-07), Digital Input 3 3030-3036 Name (Char 01-07), Digital Input 4
3050 Activate Message, Digital Input 1

3051 Activate Message, Digital Input 2
3052 Activate Message, Digital Input 3
3053 Activate Message, Digital Input 4
3060 Message Display Time, Digital Input 1
3061 Message Display Time, Digital Input 2
3062 Message Display Time, Digital Input 3
3063 Message Display Time, Digital Input 4
3070-3072 Units (Char 1-3), Analog Input 1
3073-3075 Units (Char 1-3), Analog Input 2

3076-3078 Units (Char 1-3), Analog Input 3 3200-3209 Name (Char 01-10), Alarm Output 1
3210-3219 Name (Char 01-10), Alarm Output 2
4501-4517 Message 1 (Line 01, Char 01-17), Static Message
4521-4537 Message 1 (Line 02, Char 01-17), Static Message
4541-4557 Message 1 (Line 03, Char 01-17), Static Message
4561-4577 Message 1 (Line 04, Ohar 01-17), Static Message
4581-4597 Message 2 (Line 01, Char 01-17), Static Message 4601-4617 Message 2 (Line 02, Char 01-17), Static Message 4621-4637 Message 2 (Line 03, Char 01-17), Static Message 4641-4657 Message 2 (Line 04, Char 01-17), Static Message 4661-4677 Message 3 (Line 01, Char 01-17), Static Message 4681-4697 Message 3 (Line 02, Char 01-17), Static Message 4701-4717 Message 3 (Line 03, Char 01-17), Static Message 4721-4737 Message 3 (Line 04, Char 01-17), Static Message 4741-4757 Message 4 (Line 01, Char 01-17), Static Message 4761-4777 Message 4 (Line 02, Char 01-17), Static Message 4781-4797 Message 4 (Line 03, Char 01-17), Static Message 4801-4817 Message 4 (Line 04, Char 01-17), Static Message 5506-5515 Offset Point 01-10, Analog Input 1 5516-5525 Offset Point 01-10, Analog Input 2 5526-5535 Offset Point 01-10, Analog Input 3 5536-5545 Offset Value 01-10, Analog Input 1 5546-5555 Offset Value 01-10, Analog Input 2
5556-5565 Offset Value 01-10, Analog Input 3
5566 Cear Input 1 Offsets, Analog Input 1
5567 Clear Input 2 Offsets, Analog Input 2
5568 Cear Input 3 Offsets, Analog Input 3
5569 Square Root, Analog Input 1
5570 Square Root, Analog Input 2
5571 Square Root, Analog Input 3
5572 Offset Type, Analog Input 1
5573 Offset Type, Analog Input 2
5574 Offset Type, Analog Input 3

Notes:

Appendix

Specifications A. 2
Ordering Information A. 3
Declaration of Conformity A. 4
Glossary A. 5
Index A. 8
Software Map A. 13
About Watlow and Warranty Information
Inside Back Cover

Specifications

Universal Analog Inputs 1 (2 and 3 optional)

- Update rates, $\mathrm{IN} 1=20 \mathrm{~Hz}, \mathrm{IN} 2$ and $\mathrm{IN} 3=10 \mathrm{~Hz}$

Thermocouple

- Type J, K, T, N, C (W5), E, PTII, D (W3), B, R, S

RTD

- 2 - or 3 -wire platinum, 100,500 or 1000Ω
- JIS or DIN curves, 1.0 or 0.1 indication

Process

- Input resolution $\approx 50,000$ bits at full scale
- Range selectable: $0-10 \mathrm{~V}=$ (dc), $0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc), $0-50 \mathrm{mV}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$
- Voltage input impedance $20 \mathrm{~K} \Omega$
- Current input impedance 100Ω

Digital Inputs (4)

- Update rate $=10 \mathrm{~Hz}$
- Contact or dc voltage
- $10 \mathrm{~K} \Omega$ input impedance

Control Outputs (1A, 1B)

- Update rate $=20 \mathrm{~Hz}$

Open Collector/Switched dc

- Internal load switching (nominal): Switched dc, 22 to 28V = (dc), limited @ 30mA
- External load switching max.: Open collector 42V = (dc) @ 0.5A

Solid-state Relay

- Zero switched, optically coupled, 0.5A @ 24V~(ac) minimum, $253 \mathrm{~V} \sim(\mathrm{ac})$ maxi.
Electromechanical Relay
- Form C, 2A @ $250 \mathrm{~V} \sim(\mathrm{ac})$ or $30 \mathrm{~V}=$ (dc) max.
- Resistive or inductive load
- Without contact suppression

Process Outputs (Optional Retransmit)

- Update rate $=1 \mathrm{~Hz}$
- User-selectable 0-10V $=$ (dc), $0-5 \mathrm{~V}=$ (dc), $1-5 \mathrm{~V}=$ (dc) @1K Ω min., $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} @ 800 \Omega$ max.
- Resolution:
dc ranges $=2.5 \mathrm{mV}$ nominal
mA ranges $=5 \mu \mathrm{~A}$ nominal
- Calibration accuracy:
dc ranges $= \pm 15 \mathrm{mV}$
mA ranges $= \pm 30 \mu \mathrm{~A}$
- Temperature stability $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Alarm Outputs

- Output update rate1 Hz
- Electromechanical relay, Form C, 2A @ 30V=- (dc) or 240V~(ac) maximum

Communications

- EIA-232 and EIA-485 serial communications with Modbus ${ }^{\text {TM }}$ RTU protocol

Safety and Agency Approvals

- UL®/C-UL 916-listed, File \# E185611

Process Control Equipment

- CE
- EN 61010-1
- EN 61326
- EN 55011
- NEMA 4X and IP65

Terminals

- Touch-safe, removable terminal blocks, accepts 12 to 22-gauge wire

Dimensions

- Width x height x depth 3.93 in $\times 3.93$ in $\times 3.85$ in panel mount ($99 \mathrm{~mm} \times 99 \mathrm{~mm} \times 97 \mathrm{~mm}$)

Power

- $100-240 \mathrm{~V} \sim(\mathrm{ac}),-15 \%,+10 \% ; 50 / 60 \mathrm{~Hz}, \pm 5 \%$
- $24-28 \mathrm{~V}=(\mathrm{ac} / \mathrm{dc}),-15 \%,+10 \%$ (order option)
- 39VA maximum power consumption
- Data retention upon power failure via nonvolatile memory. Sensor input isolation from input to input to output to communication circuitry is $500 \mathrm{~V} \sim(\mathrm{ac})$.

Operating Environment

- 32 to $149^{\circ} \mathrm{F}$ (0 to $65^{\circ} \mathrm{C}$)
- 0 to 90% RH, non-condensing
- Storage temperature: -40 to $158^{\circ} \mathrm{F}\left(-40\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Accuracy

- Calibration accuracy and sensor conformity: $\pm 0.1 \%$ of span $\pm 1^{\circ} \mathrm{C} @ 77^{\circ} \mathrm{F} \pm 5^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$ ambient, and rated line voltage $\pm 10 \%$ with the following exceptions:
Type T, 0.12% of span for $-200^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$ Types R and S, 0.15% of span for $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Type B, 0.24% of span for $870^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}$
- Accuracy span: Less than or equal to operating ranges, $1000^{\circ} \mathrm{F} / 540^{\circ} \mathrm{C}$ minimum
- Temperature stability: $\pm 0.1^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{F}\left(\pm 0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right)$ rise in ambient for thermocouples
- $\pm 0.05^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{F}\left(\pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}\right)$ rise in ambient for RTD sensors

Displays

- Process: 5, seven-segment LED red
- Control interface display: high-definition LCD green

Sensor Operating Ranges

Type J:	32	to $1500^{\circ} \mathrm{F}$	or	0	to	$815^{\circ} \mathrm{C}$	
Type K:	-328	to $2500^{\circ} \mathrm{F}$	or	-200	to	$1370^{\circ} \mathrm{C}$	
Type T:	-328	to	$750^{\circ} \mathrm{F}$	or	-200	to	$400^{\circ} \mathrm{C}$
Type N:	32	to	$2372^{\circ} \mathrm{F}$	or	0	to	$1300^{\circ} \mathrm{C}$
Type E:	-328	to	$1470^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$
Type C:	32	to	$4200^{\circ} \mathrm{F}$	or	0	to	$2315^{\circ} \mathrm{C}$
Type D:	32	to	$4352^{\circ} \mathrm{F}$	or	0	to $2400^{\circ} \mathrm{C}$	
Type PTII:	32	to $2543^{\circ} \mathrm{F}$	or	0	to $1395^{\circ} \mathrm{C}$		
Type R:	32	to $3200^{\circ} \mathrm{F}$	or	0	to $1760^{\circ} \mathrm{C}$		
Type S:	32	to $3200^{\circ} \mathrm{F}$	or	0	to $1760^{\circ} \mathrm{C}$		
Type B:	32	to $3300^{\circ} \mathrm{F}$	or	0	to $1816^{\circ} \mathrm{C}$		
RTD (DIN):	-328	to $1472^{\circ} \mathrm{F}$	or	-200	to $800^{\circ} \mathrm{C}$		
RTD (JIS):	-328	to $1166^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$	
Process:	-19999	to 30000 units					

Sensor Accuracy Ranges:

Input ranges

Type J:	32	to	$1382^{\circ} \mathrm{F}$	or	0	to	$750^{\circ} \mathrm{C}$
Type K:	-328	to	$2282^{\circ} \mathrm{F}$	or	-200	to	$1250^{\circ} \mathrm{C}$
Type T:	-328	to	$662^{\circ} \mathrm{F}$	or	-200	to	$350^{\circ} \mathrm{C}$
Type N:	32	to	$2282^{\circ} \mathrm{F}$	or	0	to	$1250^{\circ} \mathrm{C}$
Type E:	-328	to	$1470^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$
Type C(W5)	32	to	$4200^{\circ} \mathrm{F}$	or	0	to	$2315^{\circ} \mathrm{C}$
Type D(W3)	32	to	$4352^{\circ} \mathrm{F}$	or	0	to	$2400^{\circ} \mathrm{C}$
Type PTII:	32	to	$2540^{\circ} \mathrm{F}$	or	0	to	$1393^{\circ} \mathrm{C}$
Type R:	32	to $2642^{\circ} \mathrm{F}$	or	0	to	$1450^{\circ} \mathrm{C}$	
Type S:	32	to $2642^{\circ} \mathrm{F}$	or	0	to	$1450^{\circ} \mathrm{C}$	
Type B: 1598	to $3092^{\circ} \mathrm{F}$	or	870	to	$1700^{\circ} \mathrm{C}$		
RTD (DIN): -328	to $1472^{\circ} \mathrm{F}$	or	-200	to	$800^{\circ} \mathrm{C}$		
RTD (JIS): -328	to $1166^{\circ} \mathrm{F}$	or	-200	to	$630^{\circ} \mathrm{C}$		
Process:-19999	to 30000 units						

UL^{\circledR} is a registered trademark of Underwriter's Laboratories, Inc.

NOTE: Specifications subject to change without notice.

Ordering Information (2330)

 1/4 DIN Single-Channel ControllerSeries F4P
Single-Channel
 temperature/process controller, 1 universal analog input, 2 alarms, EIA-232/485 communications, 4 events/digital inputs

Power Supply

$\mathrm{H}=100-240 \mathrm{~V} \approx$ (ac/dc)
L = 24-28V $=(\mathrm{ac} / \mathrm{dc})$

Output 1A

C = Open collector/switched dc
E = Electromechanical relay,
Form C, 2A without contact suppression
$\mathrm{K}=$ Solid-state Form A 0.5A relay without contact suppression
$F=$ Process, 0-5, 1-5, 0-10V=(dc), $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$

Output 1B

A = None
C = Open collector/switched dc
$\mathrm{E}=$ Electromechanical relay, Form C, 2A without contact suppression
$\mathrm{K}=$ Solid-state Form A 0.5A relay without contact suppression
$F=$ Process, $0-5,1-5,0-10 V=(d c)$ $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$

Control Operation

A = Standard Control Operation
$B=$ Enhanced Control Operation, dual universal inputs, cascade, ratio, differential, slidewire control
Auxiliary Retransmit Module
0 = None
$1=$ Single retransmit output 0-5, 1-5, 0-10V $=$ (dc), $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$
$2=$ Dual retransmit outputs $0-5,1-5,0-10 \mathrm{~V}=$ (dc), $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$
Language Option
1 = English - 100Ω RTD
$2=$ German -100Ω RTD
$3=$ French -100Ω RTD
4 = Spanish - 100Ω RTD
$5=$ English $-500 \Omega \& 1000 \Omega$ RTD
$6=$ German $-500 \Omega \& 1000 \Omega$ RTD
$7=$ French $-500 \Omega \& 1000 \Omega$ RTD
8 = Spanish $-500 \Omega \& 1000 \Omega$ RTD
Display and Custom Options
RG = Standard Red Upper LED/Green Lower LCD only
XX = Custom options: software, setting parameters, overlays

Declaration of Conformity Series F4

WATLOW Winona, Inc.
1241 Bundy Boulevard
Winona, Minnesota 55987 USA

Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance.

89/336/EEC Electromagnetic Compatibility Directive

EN 61326:1997 With A1:1998 - Electrical equipment for measurement, control and laboratory use - EMC requirements (Industrial Immunity, Class A Emissions). EN 61000-4-2:1996 With A1, 1998 - Electrostatic Discharge Immunity EN 61000-4-3:1997 - Radiated Field Immunity
EN 61000-4-4:1995 - Electrical Fast-Transient / Burst Immunity
EN 61000-4-5:1995 With A1, 1996 - Surge Immunity
EN 61000-4-6:1996 - Conducted Immunity
EN 61000-4-11:1994 Voltage Dips, Short Interruptions and Voltage Variations Immunity
EN 61000-3-2:1995 With A1-3:1999 - Harmonic Current Emissions
EN 61000-3-3:1995 With A1:1998 - Voltage Fluctuations and Flicker

73/23/EEC Low-Voltage Directive

EN 61010-1:1993 With A1:1995 Safety Requirements of electrical equipment for measurement, control and laboratory use. Part 1: General requirements

déclare que le produit suivant :	Français
Désignation :	Séries F4
Numéros de modèles :	F4(S, D ou P)(H ou L) - (C, E, F ou K)(A, C, E, F ou K)(A, C, F ou K)(A, C, F, K, 0 ou 6) - (0,1 ou 2) - (N'importe quelle combinaison de trois lettres ou chiffres)
Classification :	Régulation de température, Catégorie d'installation II, Degré de pollution 2
Tension nominale :	100 à $240 \mathrm{~V} \sim(\mathrm{c} . \mathrm{a})$ ou 24 à $28 \mathrm{~V} \approx$ (c.a ou c.c)
Fréquence nominale :	50 ou 60 Hz
Consommation d'aliment	nominale : 39 VA maximum

Répond aux normes essentielles des directives suivantes de l'Union européenne en utilisant les standards normalisés ci-dessous qui expliquent les normes auxquelles répondre :

Directive 89/336/CEE sur la compatibilité électromagnétique EN 61326:1997 avec A1 :1998 - Matériel électrique destiné à l'étalonnage, au contrôle et à l'utilisation en laboratoire - Exigences CEM (Immunité indus-
trielle, Émissions de catégorie A).
EN 61000-4-2:1996 Avec A1, 1998 - Immunité aux décharges électrostatiques EN 61000-4-3:1997 - Immunité aux champs de radiation
EN 61000-4-4:1995 - Immunité contre les surtensions électriques rapides/ Rafale
EN 61000-4-5:1995 avec A1, 1996-Immunité contre les surtensions
EN 61000-4-6:1996 - Immunité conduite
EN 61000-4-11:1994 Immunité contre les écarts de tension, interruptions courtes et variations de tension
EN 61000-3-2:1995 avec A1-3:1999 - Emissions de courant harmoniques EN 61000-3-3:1995 avec A1 :1998 - Fluctuations et vacillements de tension

Directive 73/23/CEE sur les basses tensions
EN 61010-1:1993 avec A1 :1995 Normes de sécurité du matériel électrique pour la mesure, le contrôle et l'utilisation en laboratoire. 1ère partie : Conditions générales

Erklärt, dass das folgende Produkt:

Deutsch

Bezeichnung:
Modell-Nummern:

Klassifikation:

Nennspannung:
Nennfrequenz:
Nennstromverbrauch:

Serie F4
F4(S, D oder P)(H or L) - (C, E, F oder K)(A, C, E, F oder K)(A, C, F or K)(A, C, F, K, 0 oder 6) - (0, 1 oder 2) - (Beliebige drei Ziffern oder Buchstaben) Temperaturregler, Installationskategorie II, Verschmutzungsgrad 2
100 bis $240 \mathrm{~V} \sim(\mathrm{ac})$ oder 24 bis $28 \mathrm{~V} \approx$ (ac oder dc) 50 oder 60 Hz
Max. 39 VA
Erfüllt die wichtigsten Normen der folgenden Anweisung(en) der Europäischen Union unter Verwendung des wichtigsten Abschnitts bzw. der wichtigsten Abschnitte die unten zur Befolgung aufgezeigt werden.

89/336/EEC Elektromagnetische Kompatibilitätsrichtlinie

EN 61326:1997 mit A1:1998 - Elektrisches Gerät für Messung, Kontrolle und Laborgebrauch - EMV-Anforderungen (Störfestigkeit Industriebereich, Klasse A Emissionen)
EN 61000-4-2:1996 mit A1, 1998 - Störfestigkeit gegen elektronische Entladung
EN 61000-4-3:1997 - Störfestigkeit gegen Strahlungsfelder
EN 61000-4-4:1995 - Störfestigkeit gegen schnelle Stöße/Burst
EN 61000-4-5:1995 mit A1, 1996 - Störfestigkeit gegen Überspannung
EN 61000-4-6:1996 - Geleitete Störfestigkeit
EN 61000-4-11:1994 Störfestigkeit gegen Spannungsabfall, kurze Unterbrechungen und Spannungsschwankungen
EN 61000-3-2:1995 mit A1-3:1999 - Harmonische Stromemissionen
EN 61000-3-3:1995 mit A1:1998 - Spannungsfluktationen und Flimmern
EN 61000-3-3: 1995 Grenzen der Spannungsschwankungen und Flimmern

73/23/EEC Niederspannungsrichtlinie

EN 61010-1:1993 mit A1:1995 Sicherheitsanforderungen für elektrische Geräte für Messungen, Kontrolle und Laborgebrauch. Teil 1: Allgemeine Anforderungen

Declara que el producto siguiente
Español

Designación:
Números de modelo:

Clasificación:

Tensión nominal:
Frecuencia nominal:

Serie F4
F4(S, D o P)(H or L) - (C, E, F o K)(A, C, E, F o K) (A, C, F o K)(A, C, F, K, O o 6) - (0, $1 \circ 2$) (Cualesquiera tres letras o números) Control de temperatura, Categoría de instalación II, Grado de contaminación 2 100 a $240 \mathrm{~V} \sim(C A)$ o 24 a $28 \mathrm{~V}=(\mathrm{CA} \circ \mathrm{CD})$ 50 o 60 Hz
Consumo nominal de energía: 39 VA máximo

Cumple con los requisitos esenciales de las siguientes Directrices de la Unión Europea mediante el uso de las normas aplicables que se muestran a continuación para indicar su conformidad.

89/336/EEC Directriz de compatibilidad electromagnética

EN 61326:1997 CON A1:1998.- Equipo eléctrico para medición, control y uso en laboratorio - Requisitos EMC (Inmunidad industrial, Emisiones Clase A). EN 61000-4-2:1996 con A1, 1988 - Inmunidad a descarga electrostática EN 61000-4-3:1997 - Inmunidad a campo radiado
EN 61000-4-4:1995 - Inmunidad a incremento repentino/rápidas fluctuaciones eléctricas transitorias
EN 61000-4-5:1995 con A1, 1996 - Inmunidad a picos de voltaje o corriente EN 61000-4-6:1996 - Inmunidad por conducción
EN 61000-4-11:1994 Inmunidad a caídas de voltaje, variaciones y pequeñas interrupciones de voltaje
EN 61000-3-2:1995 con A1-3:1999 - Emisiones de corriente armónica
EN 61000-3-3:1995 con A1:1998 - Fluctuaciones de voltaje y centelleo.

73/23/EEC Directriz de bajo voltaje

EN 61010-1:1993 con A1:1995 Requisitos de seguridad de equipo eléctric para medición, control y uso en laboratorio. Parte 1: Requisitos generales

$\frac{\text { Dean Hoffmann }}{\text { Name of Authorized Representative }}$	Winona, Minnesota, USA
Place of Issue	
General Manager Title of Authorized Representative December 30, 2002 Signature of Issue	

Dean Hoffmann
Name of Authorized Representative

General Manager
Title of Authorized Representative

Winona, Minnesota, USA
Place of Issue

December 30, 2002
Date of Issue

Glossary

ac (~) - See alternating current.
ac/dc (\approx) - Both direct and alternating current.
alternating current - An electric current that reverses at regular intervals, and alternates positive and negative values.
American Wire Gauge (AWG) - A standard of the dimensional characteristics of wire used to conduct electrical current or signals. AWG is identical to the Brown and Sharpe ($B \& S$) wire gauge.
auto-tune - A feature that automatically sets temperature control PID values to match a particular thermal system.

AWG - See American Wire Gauge.

baud rate - The rate of information transfer in serial communications, measured in bits per second.
burst fire - A power control method that repeatedly turns on and off full ac cycles. Also called zerocross fire, it switches close to the zero-voltage point of the ac sine wave. Variable-time-base burst fire selectively holds or transits ac cycles to achieve the desired power level. See zero cross.
calibration accuracy - Closeness between the value indicated by a measuring instrument and a physical constant or known standard.
calibration offset - An adjustment to eliminate the difference between the indicated value and the actual process value.
cascade - Control algorithm in which the output of one control loop provides the set point for another loop. The second loop, in turn, determines the control action.
CE - A manufacturer's mark that demonstrates compliance with European Union (EU) Iaws governing products sold in Europe.
chatter - The rapid on-off cycling of an electromechanical relay or mercury displacement relay due to insufficient controller bandwidth. It is commonly caused by excessive gain, little hysteresis and short cycle time.
CJ C - See cold junction compensation.
closed loop - A control system that uses a sensor to measure a process variable and makes decisions based on that feedback.
cold junction - See junction, cold.
cold junction compensation - Electronic means to compensate for the effective temperature at the cold junction.
control mode - The type of action that a controller uses. For example, on/off, time proportion-
ing, PID, automatic or manual, and combinations of these.
cycle time - The time required for a controller to complete one on-off-on cycle. It is usually expressed in seconds.
dead band - The range through which a variation of the input produces no noticeable change in the output. In the deadband, specific conditions can be placed on control output actions. Operators select the dead band. It is usually above the heating proportional band and below the cooling proportional band.
default parameters - The programmed instructions that are permanently stored in the microprocessor software.
derivative - The rate of change in a process variable. Also known as rate. See PID.
derivative control (D) - The last term in the PID control algorithm. Action that anticipates the rate of change of the process, and compensates to minimize overshoot and undershoot. Derivative control is an instantaneous change of the control output in the same direction as the proportional error. This is caused by a change in the process variable (PV) that decreases over the time of the derivative (TD). The TD is in units of seconds.
Deutsche Industrial Norm (DIN) - A set of technical, scientific and dimensional standards developed in Germany. Many DIN standards have worldwide recognition.
DIN - See Deutsche Industrial Norm.
droop - In proportional controllers, the difference between set point and actual value after the system stabilizes.
duty cycle - The percentage of a cycle time in which the output is on.
EIA - See Electronics Industries of America.
EIA/TIA -232, -422, -423 and -485 - Data communications standards set by the Electronic Industries of America and Telecommunications Industry Association. Formerly referred to as RS- (Recognized Standard).

Electronics Industries of America (EIA) - An association in the US that establishes standards for electronics and data communications.
external transmitter power supply - A dc voltage source that powers external devices.
filter, digital - A filter that slows the response of a system when inputs change unrealistically or too fast. Equivalent to a standard resistor-capacitor (RC) filter.
form A - A single-pole, single-throw relay that uses only the normally open (NO) and common con-
tacts. These contacts close when the relay coil is energized. They open when power is removed from the coil.
form B - A single-pole, single-throw relay that uses only the normally closed (NC) and common contacts. These contacts open when the relay coil is energized. They close when power is removed from the coil.
form C - A single-pole, double-throw relay that uses the normally open (NO), normally closed (NC) and common contacts. The operator can choose to wire for a form A or form B contact.
Hertz (Hz) - Frequency, measured in cycles per second.
hysteresis - A change in the process variable re quired to re-energize the control or alarm output. Sometimes called switching differential.
integral - Control action that automatically eliminates offset, or droop, between set point and actual process temperature.
integral control (I) - A form of temperature control. The I of PID. See integral.
inverse scaling - The relationship between the low and high scale value and the process input or output. Minimum process signal is represented by scale high value and maximum process signal is represented by scale low value.
isolation - Electrical separation of sensor from high voltage circuitry. Allows use of grounded or ungrounded sensing element.
J IS - See J oint Industrial Standards.
J oint Industrial Standards (J IS) - A J apanese agency that establishes and maintains standards for equipment and components. Also known as JISC (J apanese Industrial Standards Committee), its function is similar to Germany's Deutsche Industrial Norm (DIN).
junction, cold - Connection point between thermocouple metals and the electronic instrument. See junction, reference.
junction, reference - The junction in a thermocouple circuit held at a stable, known temperature (cold junction). Standard reference temperature is $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$.
LCD - See liquid crystal display.
LED - See light emitting diode.
light emitting diode (LED) - A solid state electronic device that glows when electric current passes through it.
liquid crystal display (LCD) - A type of digital display made of a material that changes reflectance or transmittance when an electrical field is applied to it.
limit or limit controller - A highly reliable, discrete safety device (redundant to the primary controller) that monitors and limits the temperature of the process, or a point in the process. When temperature exceeds or falls below the limit set point, the limit controller interrupts power through the load circuit. A limit controller can protect equipment and people when it is correctly installed with its own power supply, power lines, switch and sensor.
manual mode - A selectable mode that has no automatic control aspects. The operator sets output levels.
Modbus"' - A digital communications protocol owned by AEG Schneider Automation for industrial computer networks.
Modbus"' RTU - Remote Ierminal \underline{U} nit, an individual Modbus"'-capable device on a network.
NEMA 4X - A NEMA (National Electrical Manufacturer's Association) specification for determining resistance to moisture infiltration. This rating certifies the controller as washable and corrosion resistant.
normal scaling - The relationship between the low and high scale value and the process input or output. Minimum process signal is represented by scale low value and maximum process signal is represented by scale high value.
on/off controller - A temperature controller that operates in either full on or full off modes.
open loop - A control system with no sensory feedback.
output - Control signal action in response to the difference between set point and process variable.
overshoot - The amount by which a process variable exceeds the set point before it stabilizes.
page - A fixed length block of data that can be stored as a complete unit in the computer memory.
P control - Proportioning control.
PD control - Proportioning control with derivative (rate) action.
PDR control - Proportional derivative control with manual reset, used in fast responding systems where the reset causes instabilities. With PDR control, an operator can enter a manual reset value that eliminates droop in the system.
PI control - Proportioning control with integral (auto-reset) action.
PID - Proportional, integral, derivative. A control mode with three functions: proportional action dampens the system response, integral corrects for droop, and derivative prevents overshoot and undershoot.
process variable - The parameter that is controlled or measured. Typical examples are temperature, relative humidity, pressure, flow, fluid level, events, etc. The high process variable is the highest value of the process range, expressed in engineering units. The low process variable is the lowest value of the process range.
proportional - Output effort proportional to the error from set point. For example, if the proportional band is 20° and the process is 10° below set point, the heat proportioned effort is 50 percent. The lower the PB value, the higher the gain.
proportional band (PB) - A range in which the proportioning function of the control is active. Expressed in units, degrees or percent of span. See PID.
proportional control - A control using only the P (proportional) value of PID control.
radio frequency interference (RFI) - Electromagnetic waves between the frequencies of 10 KHz and 300 GHz that can affect susceptible systems by conduction through sensor or power input lines, and by radiation through space.
ramp - A programmed increase in the temperature of a set point system.
range - The area between two limits in which a quantity or value is measured. It is usually described in terms of lower and upper limits.
rate - Anticipatory action that is based on the rate of temperature change, and compensates to minimize overshoot and undershoot. See derivative.
rate band - A range in which the rate function of a controller is active. Expressed in multiples of the proportional band. See PID.
reference junction - see junction, reference.
reset - Control action that automatically eliminates offset, or droop, between set point and actual process temperature. Also see integral.
automatic reset - The integral function of a PI or PID temperature controller that adjusts the process temperature to the set point after the system stabilizes. The inverse of integral.
automatic power reset - A feature in latching limit controls that does not recognize power outage as a limit condition. When power is restored, the output is re-energized automatically, as long as the temperature is within limits.
resistance temperature detector (RTD) - A sensor that uses the resistance temperature characteristic to measure temperature. There are two basic types of RTDs: the wire RTD, which is usually made of platinum, and the thermistor, which is
made of a semiconductor material. The wire RTD is a positive temperature coefficient sensor only, while the thermistor can have either a negative or positive temperature coefficient.
retransmit - An output that provides a scalable analog signal that represents an input value, set point value or output power level.
RFI - See radio frequency interference.
RTD - See resistance temperature detector.
serial communications - A method of transmitting information between devices by sending all bits serially over a single communication channel.
set point - The desired value programmed into a controller. For example, the temperature at which a system is to be maintained.
SI (Systeme Internationale) - The system of standard metric units.
switching differential - See hysteresis.
thermal system - A regulated environment that consists of a heat source, heat transfer medium or load, sensing device and a control instrument.
thermocouple (\mathbf{t} / \mathbf{c}) - A temperature sensing device made by joining two dissimilar metals. This junction produces an electrical voltage in proportion to the difference in temperature between the hot junction (sensing junction) and the lead wire connection to the instrument (cold junction).
thermocouple break protection - The ability of a control to detect a break in the thermocouple circuit and take a predetermined action.
time proportioning control - A method of controlling power by varying the on/off duty cycle of an output. This variance is proportional to the difference between the set point and the actual process temperature.
transmitter - A device that transmits temperature data from either a thermocouple or a resistance temperature detector (RTD) by way of a twowire loop. The loop has an external power supply. The transmitter acts as a variable resistor with respect to its input signal. Transmitters are desirable when long lead or extension wires produce unacceptable signal degradation.
WATLINK - A Windows-based software application for configuring and communicating with Watlow controllers.
zero cross - Action that provides output switching only at or near the zero-voltage crossing points of the ac sine wave. See burst fire.
zero switching - See zero cross.

Index

Boldface page numbers refer to parameter entries.
(2) key 2.2
0.000 V , Calibrate, Input x (1 to 3) $\mathbf{6 . 2 9}$
0.00 mV Thermocouple, Calibrate Input x (1 to 3) 6.29
1.000 V , Calibrate Output $\times(1 \mathrm{~A}$ or 1 B) 6.30
1.000V, Retransmit x (1 and 2) 6.30
4.000 mA , Calibrate Input x (1 to 3) 6.30
4.000 mA , Calibrate Output x (1A or 1B) 6.30
4.000 mA , Calibrate Retransmit x (1 and 2) 6.30
10.000 V , Calibrate Input x (1 to 3) 6.30
10.000 V , Calibrate Output \times (1 A or 1 B)

6.31

10.000V, Calibrate Retransmit x (1 and 2) 6.31
15.0 Ohms, Calibrate Input x (1 to 3 RTD) 6.29
15.0 Ohms, Calibrate Input 3 slidewire 6.30
20.000mA, Calibrate Input x (1 to 3) 6.30
20.000 mA , Calibrate Output x (1A or 1B) 6.30
20.000 mA , Calibrate Retransmit $\times(1$ and 2) 6.30
$32^{\circ} \mathrm{F}$ Type J, Calibrate Input x (1 to 3) 6.29
50.00 mV Thermocouple, Calibrate Input x (1 to 3) 6.29
380.0 Ohms, Calibrate Input x (1 to 3) 6.29

1000 Ohms, Calibrate Input 3 slidewire 6.29
${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C} 6.11$

A

A to D, CJ C x (1 to 3) $\mathbf{6 . 2 8}$
A to D, Input x (1 to 3) $\mathbf{6 . 2 8}$
accuracy A. 2
Activate Message $\mathbf{6 . 1 7}$
active output indicator lights 2.2
Address 6.20
agency approvals A. 2
alarms
clearing 3.1
deviation 3.1, 7.10
features 7.10-7.11
operation 3.1
process 3.1, 7.10
rate 3.1, 7.10
self-clearing 7.11
set points 7.10
troubleshooting 2.5
Alarm x (1 or 2) Condition 6.2
Alarm $\times(1$ or 2$)$ High Deviation 6.7
Alarm x (1 or 2) High Set Point 7.10 7.11, 6.6

Alarm x (1 or 2) Low Deviation 6.7
Alarm x (1 or 2) Low Set Point 7.10 7.11, 6.6

Alarm $\times(1$ or 2) Maximum High Rate 6.7

Alarm x (1 or 2) Maximum Low Rate 6.7

Alarm Hysteresis 6.19, 7.10
alarm latching 7.11 - See also Latching
Alarm Logic 6.19
Alarm Messages 6.19
Alarm Name 6.19 - see also Name
alarm output indicator lights 2.2
Alarm Output x (1 and 2) Menu 6.19
Alarm Set Points 3.1, 6.6, 7.10
Alarm Set Points Menu 6.6-6.7
Alarm Sides 6.19, 7.11
alarm silencing 7.11 - see also Silencing
Alarm Source 6.19
alarm status, indicator light 2.2
Alarm Type 6.19
Alternate Control 6.17, 7.15
ambient temperature 3.3
Analog Input 2 Menu 6.13
Analog Input 3 Menu 6.15-6.16
Analog Input x (1 to 3) Menu 6.12 6.15
wiring 8.6-8.8
Analog Range $\mathbf{6 . 2 0}$
Auto/Manual Key 2.2
Auto/Manual Light 2.2
Auto/Manual Slidewire Calibration 6.15
automatic and manual operation 2.3

Autotune PID 3.1-3.2, 6.4, 7.9
Autotune PID Menu 6.4
Autotune PID Type 6.4
Autotune Set Point 6.11
autotuning 3.1-3.2, 7.9
lockout 6.26
multiple PID sets 3.3
PID 3.1-3.2
set point value 3.2, 7.9
Autotuning Channel x (1 or 2) 6.2

B

Baud Rate 6.20

B\&B Converter 8.13
boost cool 7.12
Boost Delay Time 6.8
boost heat 7.12
boost on delay 7.12
Boost Power 6.8, 7.12
Boost Power Mode 6.18
Boost Set Point 6.8
Boost Set Point Type 6.19
Boost Type 6.18
burst fire 7.8
heater life 7.8
noise generation (RFI) 7.8
sine wave 7.8

C

Calibrate Input x (1 to 3) Menu 6.27 6.28

Calibrate Output x (1 A or 1 B) and Re transmit x (1 and 2) Menu 6.28 6.29

Calibration Offset Value 6.14
calibration offset - see multiple input offsets
Calibration Retransmit x (1 or 2) Menu 6.30-6.31
calibration, overview 5.3
inputs 5.3-5.4
outputs 5.5-5.6

Cascade 6.16

Cascade High Deviation 6.16
Cascade High Range 6.16
Cascade Inner Loop 6.4
Cascade Low Deviation 6.16
Cascade Low Range 6.16
Cascade Outer Loop 6.4

CE Declaration of Conformity A. 4 Change Password 5.2, 6.26 changing and setting password 6.26 charts

Operations Page Record 6.10
Custom Main Page Record 6.25
Setup Record 6.23-6.24
chattering 7.6
CJ Cx (1 to 3) A to D, Diagnostic 6.28
CJ Cx (1 to 3) Temp, Diagnostic 6.28
Clear Input x (1 to 3) Offsets 6.14
Clear Locks 6.26
clearing alarms 3.1
clearing errors 3.1
closed loop 7.5
closed-loop configuration 2.3, 7.5
CMC converter 8.13
Communications 6.20, 9.1.-9.13
communications indicator light 2.2
Communications Menu 6.20
communications wiring 8.12-8.13
B\&B converter 8.13
CMC converter 8.13
EIA-232 to EIA-485 conversion 8.13

EIA/TIA 485 8.12-8.13
EIA/TIA 232 8.12-8.13
termination for EIA-232 to EIA-485 converter 8.12
Condition 6.18
Conformity A. 4
Control Output x (1A and 1B) Menu 6.18

Control Set Points Menu 6.8-6.9
Control Type, Analog Input 26.13
Control Type, Analog Input 36.16
controller, overview 1.1
crossover 7.8
current process input, calibration 5.4 cursor 2.2
Custom Main Page 2.3, 4.21, 6.21
Custom Main Page Menu 6.21
Custom Main Page Record 6.25
customizing the Main Page 4.2
Cycle Time Type 6.18
Cycle Time Value $\mathbf{6 . 1 8}$

D

dead band 3.2, 7.7

Dead Band x (A or B), Cascade PID 3.3 - 3.4, 6.6, 7.16

Dead Band x (A or B), PID Set Channel 1 3.3-3.4, 6.5, 7.16
Decimal, Anal og Input x (1 to 3) 6.13
Declaration of Conformity A. 4
default Main Page parameters 2.1
derivative 7.7
derivative (rate) time 3.2
Derivative x (A or B) 3.2
Derivative x (A or B), Cascade PID 3.3 - 3.4, 6.6, 7.16

Derivative x (A or B), PID Set Channel

16.5

deviation 3.1
deviation alarm 3.1, 7.10
Diagnostic Menu 6.27-6.28
diagnostics, overview 5.3
Differential Control 7.17
Differential Set Point 6.2
Digital Differential Set Point x (1 to 4) 6.9

Digital Input x (1 to 4) Menu 6.17 6.18
digital inputs 7.4
digital inputs, wiring 8.9
Digital Ratio Set Point x (1 to 4) 6.9
Digital Set Point x (1 to 4) 6.8, 7.14
digital set points 7.13
dimensions 8.1-8.2
Display Test 5.3, 6.28
Display Time 6.22
displays, front panel 2.2
cursor 2.2
Lower Display 2.2
scroll bar 2.2
Upper Display 2.2
displays, overview 2.1-2.2
Down Key 2.2
droop 7.6-7.7
Duplex 6.18, 7.13

E

Edit PID 3.2, 6.4-6.6, 7.6-7.8
EIA/TIA 485 and EIA/TIA 2328.12 8.13
enter key 2.3
Error Latch $\mathbf{6 . 1 5}$
errors
fatal errors 2.5
input errors 2.5
system errors 2.6
troubleshooting 2.4-2.6
Event Input - see Digital Inputs x

F

Factory Page 5.1-5.6, 6.26-6.30
Factory Page, Set Lockout 5.1, 6.26
Fahrenheit or Celsius scale (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$)

4.1, 6.11

Failure Mode 6.11
Filter Time 6.15, 7.3
filter time constant 7.3
full access 5.1
Full Defaults 5.3, 6.28
Function, Control Output x (1A and 1B)

6.18

Function, Digital Input x (1 to 4) 6.17

G

Glossary A.5-A.7
Go to Factory 2.1, 6.3
Go to Operations 2.1, 6.3
Goto Setup 2.1, 6.3
Ground 6.29
guided programming 2.3

H

heater life 7.8
hidden (security level) 5.1
High Power Limit 6.18
High Scale 6.20, 7.4
high state 7.4
hysteresis 7.6
hysteresis, alarm - see Alarm Hysteresis
Hysteresis X (A or B), Cascade PID 3.3 - 3.4, 6.6, 7.16

Hysteresis x (A or B), PID Set Channel 16.5

I, J

"i" key 1.2, 2.2
indicator lights 2.2
Information Key 1.2, 2.2
Input 1 Fail 6.12
input calibration 5.3-5.4
input errors 2.5
input offset x (1 to 10) 7.2
input wiring
analog 8.6-8.8
digital 8.9
input x (1 to 3)
calibration 5.3-5.4
wiring 8.6-8.8
Input x (1 to 3), Diagnostic 6.27-6.28
Input x (1 to 3) A to D, Diagnostic 6.28
Input x (1 to 3) Error 6.2
input-to-output isolation 8.5
inputs and outputs 1.1
calibration 5.3-5.6
wiring, overview 8.5
installation
dimensions 8.1-8.2
installing 8.3
tools required 8.3
integral 7.7
integral (reset) adjustment 3.2
integral action 7.7
integral control 7.7
integral derivative control 7.7
Integral x (A or B), Cascade PID 3.3 3.4, 6.5, 7.16

Integral x (A or B), PID Set Channel 1

6.4

isolation barriers 8.5
inverse scaling 7.4

K

keys 2.2, A. 13
Information Key 1.2, 2.2
Left and Right Keys 2.2
Up and Down Keys 2.2
keys, displays and navigation, overview 2.1-2.2

L

Latching 6.19
Lead 6.29
LED Intensity 6.22
Left Key 2.2
lights
active output indicator 2.2
alarm output indicator 2.2
communications indicator 2.2

Line Frequency 6.28
linearization 6.12
lock levels 5.1
Factory Page 5.1
Operations Page 5.1
password 5.2
set point 5.1
Setup Page 5.1
lockout menu (Set Lockout) 6.26-6.27
locks, overview 5.1
Low Power Limit 6.18
Low Scale 6.20, 7.4
low state 7.4
Lower Display 2.2

M

Main Page
Custom Main Page 2.3, 4.2, 6.2, 6.21
error messages on 2.1, 2.5-2.6, 6.2
manual control 6.17
manual operation 2.3
Manual to Auto Transfer 2.3, 6.11
manual tuning 2.3
Manufacturing Date 6.27
map, software A. 13 - A. 14
Maximum Transfer Cool 6.11
Maximum Transfer Heat 6.11
Message Display Time 6.17
Message x (1 to 4) 6.22
Minimum Transfer Power 7.5
Modbus 9.1-9.13
exception responses 9.1
al phabetical list 9.2-9.10
numerical list 9.11-9.13
Model 6.27
model number 6.27, 8.5, A. 3
multiple input offsets 6.14, 7.2
multiple PID sets $3.3-3.4,7.8$
multiple tuning procedure 3.2

N

Name, Alarm Output x (1 and 2) 6.19
Name, Digital Input x (1 to 4) 6.17
navigation
keys 2.2
overview 2.1
noise generation (RFI) 7.8

0

Offset Point x (1 to 10), Input 16.14
Offset Point x (1 to 10), Input 26.14
Offset Point x (1 to 10), Input $3 \mathbf{6 . 1 4}$
Offset Point Settings 7.2
Offset Type $\mathbf{6 . 1 4}$
Offset Value x (1 to 10), Input 16.14
Offset Value x (1 to 10), Input 26.15
Offset Value x (1 to 10), Input $3 \mathbf{6 . 1 5}$
on-off control 7.6
open loop 7.5
Open Loop Detect 6.12, 7.9
open loop error 7.9
Operations Menu 6.7
Operations Page 3.1-3.4, 6.4-6.10
Operations Page Parameter Record 6.12

Operations, Alarm Set Point 6.6-6.7
Operations, Alarm Set Point, Set Lockout 6.26
Operations, Autotune PID 6.4
Operations, Autotune PID, Set Lockout
6.26

Operations, Control Set Point Menu 6.8

Operations, Control Set Point, Set Lockout 6.27
Operations, Edit PID Menu 6.4-6.5
Operations, Edit PID, Set Lockout 6.26
operations, overview 3.1
Operations, PID Crossover 6.7
Operations, PID Crossover, Set Lockout 6.27

Operations, Ramp Set Point, Set Lockout 6.27
Operations, Ramp to Set Point Menu 6.7-6.8

Operations, Remote/Local Set Point, Set Lockout 6.27
operator's display - see Lower Display
output calibration 5.5-5.6
output status, indicators 2.2
output wiring 8.10-8.11
Output x (1A or 1B), Diagnostic 6.28
overshoot 7.7

P, Q

pages, software A. 13 - A. 14
parameter records
Custom Main Page 6.25
Operations Page 6.10
Setup Page 6.23-6.24
parameter setup order 4.1
Parameter x (1 to 16) 6.2, 6.21
password lock 5.1
password, setting or changing 5.2
PI control 7.7
droop 7.7
Integral 7.7
overshoot 7.7
reset 7.7
PID 7.7
PID block - see PID Set
PID control 7.7
derivative 7.7
autotuning 7.9
PID Cross 6.7
PID Crossover 6.7
PID parameters, adjusting manually 3.2

PID Set x (1 to 5), Cascade PID 3.3 3.4, 6.5-6.6, 7.16

PID Set x (1 to 5), PID Set Channel 1 6.4-6.5

PID Units 4.1, 6.11
PID, multiple sets 7.8
power level 7.12
power wiring 8.5
Process 6.18
process alarm 7.10
Process Display 6.22
Process Display Menu 6.22
process input, wiring 8.6, 8.8
process or deviation alarms 3.1, 7.10
Process Output Calibration 5.5
process tracking 7.5
Propband - see Proportional Band
proportional action 7.6-7.7
Proportional Band x (A or B), Cascade PID 3.3-3.4, 6.5, 7.16
Proportional Band x (A or B), PID Set Channel 1 3.2, 6.4, 7.6-7.7
proportional control 7.6-7.7
proportional integral derivative (PID) control 7.7
proportional plus integral (PI) control 7.7
proportional plus integral plus derivative (PID) control 7.7
PV bias - see multiple input offsets

R

Ramp to Set Point Menu 6.7
Ramp to Set Point Mode 6.7
Ramp to Set Point Rate 6.8
Ramp to Set Point Scale 6.8
rate alarm 3.1, 7.10
Ratex (A or B), Cascade PID 3.3-3.4, 6.6, 7.16

Rate x (A or B), PID Set Channel 1 3.2, 6.5

Ratio Control 7.17
Ratio set point 6.2
read only (security level) 5.1
Records
Custom Main Page 6.25
Operations Page 6.10
Setup Page 6.23-6.24
reference compensator 5.3
Remote/Local Set Point 6.9
Remote Set Point 7.15
removing the controller 8.4
reset 7.7
reset value 7.7
Reset $x(A$ or $B) 3.2$
Reset x (A or B), Cascade PID 3.3 3.4, 6.6, 7.16

Reset x (A or B), PID Set Channel 1 6.5
resistance temperature detector - see RTD
Restore Input x (1 to 3) Calibration 6.31
restoring factory calibration values 5.3
retransmit 7.9
Retransmit Output x (1 and 2) Menu 6.20, 7.4

Retransmit Outputs calibration 5.6 wiring 8.11
Retransmit Source $\mathbf{6 . 2 0}$
Retransmit x (1 or 2) 6.28
Reverse outputs 6.17
Revision 6.27

RFI 7.8
Right Key 2.2
rising edge 7.4
RTD
input calibration 5.3-5.4
inputs, wiring 8.6-8.7

S

safety info inside front cover
Scale High 6.13, 7.4
Scale Low 6.13, 7.4
Scale Offset $\mathbf{6 . 2 0}$
Scaling 6.14, 7.4
scroll bar 2.2
security and locks, overview 5.1
passwords 5.2
security levels 5.1
Set Lockout Menu 6.26-6.27
security levels 5.1
self tune - see autotune
self-clearing alarm 7.11
Sensor 6.12
sensor installation guidelines 8.5
accuracy ranges A. 2
process input 8.6, 8.8
RTD input 8.6-8.7
thermocouple inputs 8.6-8.7
Serial Number 6.27
Set Lockout Menu 6.26-6.27
Set Point High Limit 6.13
Set Point Low Limit 6.13
Set Point, Set Lockout $\mathbf{6 . 2 6}$
set point
locking out 5.1
manual tuning 3.2
ramping to 6.7-6.8
remote 6.9, 7.15
static control 2.3
Set Point 6.26
Set Point High Limit 6.13, 7.3
Set Point Low Limit 6.13, 7.3
set variable - see set point
Set/Change Password 6.26
setup
customizing the Main Page 4.2
guided 2.3
guidelines 4.1
overview 4.1
parameter record 6.23-6.24
parameter setup order 4.1
steps 1.2
Setup Page 4.1-4.2, 6.11-6.24
Setup Page Parameter Record 6.24 6.25

Setup Page, Set Lockout 6.26
Show ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C} 6.11$
Silencing 6.19
silencing, alarm 7.11
sine wave 7.8
Slidewire Control 7.18
Slidewire Deadband 6.16
Slidewire Hysteresis 6.16
Slidewire Learn Closed 6.15
Slidewire Learn Open 6.16
Software Number 6.27
software map A. 13 - A. 14
solid-state relay, wiring 8.10
source, alarm - see Alarm Source
Specifications A. 2
Square Root 6.15
Static Message Menu 6.22
static set point control - see set point
system errors 2.6
System Menu 6.11-6.12
Systeme Internationale (SI) 4.1

T

technical assistance inside front cover
temperature scale (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$) 4.1, 6.11
terminals A. 2
Test Menu 6.28
Test Outputs $\mathbf{6 . 2 8}$
thermocouple
input calibration 5.3-5.4
reference compensator 5.3
wiring 8.6-8.7
time filter 7.3
transformer isolation 8.5
troubleshooting alarms and errors 2.5

- 2.6

Troubleshooting Chart 2.4-2.6
Type, Analog Input x (1 to 3) 6.12

U

Units 6.13
PID 4.1, 6.11
SI/U.S. 4.1, 6.11
U.S. units 4.1

Up Key 2.2
Upper Display 2.2

V

values, how to enter 2.3
voltage process input calibration 5.4

W

warranty insideback cover
wiring
communications 8.12-8.13
inputs 8.6-8.9
outputs 8.10-8.11
overview 8.5
power 8.5
retransmit and alarm 8.11
wiring example 8.14
wiring notes 8.15
X, Y, Z
zero-cross switching (burst fire) 7.8

Series F4P Software Map

For ranges, defaults, Modbus numbers and other information about the parameters, refer to the Parame ter Tables in Chapter 6.

Main Page see Chapter 2

```
Input x (1 to 3) Error
Alarm x (1 to 2) Condition
Parameter x (1 to 16)
    Process 1 Value
    Process 1 Value bar graph
    Set Point 1 (or Idle Set Point)
    Set Point 1 (or Idle Set Point) value
        bar graph
    Remote Set Point 2
    Remote Set Point 3
    Output 1A Power
    Output 1A Power bar graph
    Output 1B Power
    Output 1B Power bar graph
    Autotuning
    Time Remaining
    Active PID Set
Go to Operations
Go to Setup
Go to Factory
```


Operations Page see Chapter 3

Autotune PID
Channel 1 Autotune
Autotune PID Type
Autotune Cascade PID
Cascade Inner Loop
Cascade Outer Loop
Edit PID
PID Set x (1 to 5) (Optional Inner Loop)
Proportional Band A
Integral A / Reset A
Derivative A / Rate A
Dead Band A
Hysteresis A
Proportional Band B
Integral B / Reset B
Derivative B / Rate B
Dead Band B
Hysteresis B
Cascade Outer Loop PID Set x (1-5)
Proportional BandA
Integral A / ResetA
Derivative A / RateA
Dead Band A
Hysteresis A
Proportional Band B
Integral B / ResetB
Derivative B / RateB
Dead Band B
Hysteresis B
Alarm Set Points
Alarm Low Set Point
Alarm High Set Point
Alarm Low Deviation
Alarm High Deviation
Alarm Maximum Low Rate
Alarm Maximum High Rate
PID Crossover
PID Crossover
PID Cross x
Ramp x to Set Point
Ramp to Set Point Mode
Ramp to Set Point Scale
Ramp to Set Point Rate
Control Set Points
Boost Power
Boost Delay Time
Boost Set Point
Digital Set Point x (1 to 4)
Digital Differential Set Point x
(1 to 4)
Digital Ratio Set Point x
(1 to 4)
Remote/Local Set Points
Remote/Local Set Point

```
Setup Page see Chapter 4
System
    PID Units
    OF or *}\mp@subsup{}{}{\circ
    Show *F or *}\mp@subsup{}{}{\circ}\textrm{C
    Maximum Transfer Heat
    Maximum Transfer Cool
    Manual to Auto Transfer
    Autotune Set Point
    Failure Mode
    Input 1 Fail
    Open Loop Detect
Analog Input x (1 to 3)
    Sensor
    Type
Analog Input 2
    Control Type
Analog Input x (1 to 3) continued
    Units
    Decimal
    Scale Low
    Scale High
    Scaling
    Set Point Low Limit
    Set Point High Limit
    Offset Type
    Calibration Offset Value
    Clear Input x (1 to 3) Offsets
    Offset Point x (1 to 10)
    Offset Value x (1 to 10)
    Filter Time
    Error Latch
    Square Root
Analog Input 3
    Auto/Manual Slidewire Calibration
    Slidewire Learn Closed
    Slidewire Learn Open
    Slidewire Deadband
    Slidewire Hysteresis
    Control Type
    Cascade
    Cascade Low Range, Process
    Cascade High Range, Process
    Cascade Low Deviation Range
    Cascade High Deviation Range
Digital Input x (1 to 4)
    Function
    Name
    Activate Message
    Message Display Time
    Condition
Control Output x (1A, 1B)
    Function
    Cycle Time Type
    Cycle Time Value
    Process
    Duplex (1A)
    High Power Limit
    Low Power Limit
    Boost Type (1B)
    Boost Power Mode (1B)
    Boost Set Point Type (1B)
Alarm Output x (1 and 2)
    Name
```


About Watlow Winona

Watlow Winona is a U.S. division of Watlow Electric Mfg. Co., St. Louis, Missouri, a manufacturer of industrial electric heating products since 1922. Watlow products include electric heaters, sensors, controllers and switching devices. The Winona operation has been designing solid-state electronic control devices since 1962, and has earned the reputation as an excellent supplier to original equipment manufacturers. These OEMs and end users depend upon Watlow Winona to provide compatibly engineered controls that they can incorporate into their products with confidence. Watlow Winona resides in a 100,000-square-foot marketing, engineering and manufacturing facility in Winona, Minnesota.

Warranty

The Watlow Series F4P is warranted to be free of defects in material and workmanship for 36 months after delivery to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use, and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder, at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse, or abuse.

Returns

1. Call Watlow Customer Service, (507) 454-5300, for a Return Material Authorization (RMA) number before returning any item for repair. We need the following information:

- Ship to address
- Bill to address
- Contact name
- Phone number
- Method of return shipment
- Your P.O. number
- Detailed description of the problem • Any special instructions
- Name and phone number of the person returning the product

2. Prior approval and an RMA number, from the Customer Service Department, is required when returning any unused product for credit. Make sure the RMA number is on the outside of the carton, and on all paperwork returned. Ship on a Freight Prepaid basis.
3. After we receive your return, we will examine it and determine the cause for your action.
4. In cases of manufacturing defect, we will enter a repair order, replacement order or issue credit for material returned.
5. To return products that are not defective, goods must be in new condition, in the original boxes and they must be returned within 120 days of receipt. A 20 percent restocking charge is applied for all returned stock controls and accessories.
6. If the unit is unrepairable, it will be returned to you with a letter of explanation. Repair costs will not exceed 50 percent of the original cost.
7. Watlow reserves the right to charge for no trouble found (NTF) returns, not to exceed 20 percent of the original net price.

Your Authorized Watlow Distributor:

United States (headquarters):

Watlow Electric Manufacturing Company 12001 Lackland Road
St. Louis, Missouri USA 63146
Telephone: +1 (314) 878-4600
Fax: +1 (314) 878-6814

Europe:

Watlow GmbH Industriegebiet Heidig
Lauchwasenstr. 1, Postfach 1165,
Kronau 76709 Germany
Telephone: +49 7253-9400 0
Fax: +49 7253-9400 44
Watlow France S.A.R.L.
Immeuble Somag, 16 Rue Ampère,
Cergy Pontoise CEDEX 95307 France
Telephone: +33 (1) 3073-2425
Fax: +33 (1) 3073-2875
Watlow Italy S.R.L.
Via Meucci 14
20094 Corsico MI
Italy
Telephone: +39 (02) 4588841
Fax: +39 (02) 458-69954
Watlow Limited
Robey Close, Linby Industrial Estate,
Linby Nottingham England, NG15 8AA
Telephone: +44 (0) 1159640777
Fax: +44 (0) 1159640071

Latin America:

Watlow de México
Av. Fundición \#5,
Col. Parques Industriales,
Querétaro, Qro. México CP-76130
Telephone: +52 (442) 217-6235
Fax: +52 (442) 217-6403

Asia/Pacific:

Watlow Australia Pty., Ltd.
23 Gladstone Park Drive,
Tullamarine, Victoria 3043 Australia
Telephone: +61 (39) 335-6449
Fax: +61 (39) 330-3566
Watlow China, Inc.
179, Zhong Shan Xi Road
Hong Qiao Cointek Bldg, FI. 4, Unit P
Shanghai 200051 China
Telephone: +86 (21) 6229-8917
Fax: +86 (21) 6228-4654
Watlow Japan Ltd. K.K.
Azabu Embassy Heights 106,
1-11-12 Akasaka,
Minato-ku, Tokyo 107-0052 Japan
Telephone: +81 (03) 5403-4688
Fax: +81 (03) 5403-4646
Watlow Korea Co., Ltd.
3rd F. Taehong Bldg.
20-6, Seocho-gu, Yangjae-dong
Seoul, 137-130 Korea
Telephone: +82 (2) 575-9804
Fax: +82 (2) 575-9831
Watlow Malaysia Sdn Bhd
38B Jalan Tun Dr Awang
11900 Bayan Lepas
Penang Malaysia
Telephone: +60 (4) 641-5977
Fax: +60 (4) 641-5979
Watlow Singapore Pte. Ltd.
Ayer Rajah Crescent
\#03-23 Ayer Rajah Industrial Estate
Singapore 139949
Telephone: +65 7739488
Fax: +65 7780323
Watlow Electric Taiwan
10F-1 No. 189
Chi-Shen 2nd Road,
Kaohsiung, Taiwan
Telephone: +886 (7) 288-5168
Fax: +886 (7) 288-5568

[^0]: *Thetenth digit of your moded number, F4XX-XXXX$X \mathbf{X X X}$, determines what prompts appear and what input resistance values to use for RTD calibration. Refer to the Ordering Information in the Appendix.

[^1]: * Note: Digital inputs are edge triggered and require a transition from a high to low or low to high state.

[^2]: * Inputs 2 and 3 only available if unit has the Enhanced Control Operation option. Theeighth digit of your model number, F4PX-XXXX-XXXX, determines the Control Operation. Refer to the Ordering Information in the Appendix.

